![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr4i | GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eqtr4i | ⊢ 𝐶 = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
2 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
3 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
4 | 2, 3 | eqtr4i 2217 | . 2 ⊢ 𝐷 = 𝐴 |
5 | 1, 4 | eqtr4i 2217 | 1 ⊢ 𝐶 = 𝐷 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: rabswap 2673 rabbiia 2745 cbvrab 2758 cbvcsbw 3084 cbvcsb 3085 csbco 3090 csbcow 3091 cbvrabcsf 3146 un4 3319 in13 3372 in31 3373 in4 3375 indifcom 3405 indir 3408 undir 3409 notrab 3436 dfnul3 3449 rab0 3475 prcom 3694 tprot 3711 tpcoma 3712 tpcomb 3713 tpass 3714 qdassr 3716 pw0 3765 opid 3822 int0 3884 cbviun 3949 cbviin 3950 iunrab 3960 iunin1 3977 cbvopab 4100 cbvopab1 4102 cbvopab2 4103 cbvopab1s 4104 cbvopab2v 4106 unopab 4108 cbvmptf 4123 cbvmpt 4124 iunopab 4312 uniuni 4482 2ordpr 4556 rabxp 4696 fconstmpt 4706 inxp 4796 cnvco 4847 rnmpt 4910 resundi 4955 resundir 4956 resindi 4957 resindir 4958 rescom 4967 resima 4975 imadmrn 5015 cnvimarndm 5029 cnvi 5070 rnun 5074 imaundi 5078 cnvxp 5084 imainrect 5111 imacnvcnv 5130 resdmres 5157 imadmres 5158 mptpreima 5159 cbviota 5220 sb8iota 5222 resdif 5522 cbvriota 5884 dfoprab2 5965 cbvoprab1 5990 cbvoprab2 5991 cbvoprab12 5992 cbvoprab3 5994 cbvmpox 5996 resoprab 6014 caov32 6106 caov31 6108 ofmres 6188 dfopab2 6242 dfxp3 6247 dmmpossx 6252 fmpox 6253 tposco 6328 mapsncnv 6749 cbvixp 6769 xpcomco 6880 sbthlemi6 7021 xp2dju 7275 djuassen 7277 dmaddpi 7385 dmmulpi 7386 dfplpq2 7414 dfmpq2 7415 dmaddpq 7439 dmmulpq 7440 axi2m1 7935 negiso 8974 nummac 9492 decsubi 9510 9t11e99 9577 fzprval 10148 fztpval 10149 sqdivapi 10694 binom2i 10719 4bc2eq6 10845 shftidt2 10976 cji 11046 xrnegiso 11405 cbvsum 11503 fsumrelem 11614 cbvprod 11701 nn0gcdsq 12338 dfrhm2 13650 rmodislmod 13847 cnfldsub 14063 dvdsrzring 14091 restco 14342 cnmptid 14449 plyid 14892 sincos3rdpi 14978 lgsdir2lem5 15148 2lgsoddprmlem3d 15198 if0ab 15297 |
Copyright terms: Public domain | W3C validator |