![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr4i | GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eqtr4i | ⊢ 𝐶 = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
2 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
3 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
4 | 2, 3 | eqtr4i 2201 | . 2 ⊢ 𝐷 = 𝐴 |
5 | 1, 4 | eqtr4i 2201 | 1 ⊢ 𝐶 = 𝐷 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 ax-17 1526 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 |
This theorem is referenced by: rabswap 2656 rabbiia 2723 cbvrab 2736 cbvcsbw 3062 cbvcsb 3063 csbco 3068 csbcow 3069 cbvrabcsf 3123 un4 3296 in13 3349 in31 3350 in4 3352 indifcom 3382 indir 3385 undir 3386 notrab 3413 dfnul3 3426 rab0 3452 prcom 3669 tprot 3686 tpcoma 3687 tpcomb 3688 tpass 3689 qdassr 3691 pw0 3740 opid 3797 int0 3859 cbviun 3924 cbviin 3925 iunrab 3935 iunin1 3952 cbvopab 4075 cbvopab1 4077 cbvopab2 4078 cbvopab1s 4079 cbvopab2v 4081 unopab 4083 cbvmptf 4098 cbvmpt 4099 iunopab 4282 uniuni 4452 2ordpr 4524 rabxp 4664 fconstmpt 4674 inxp 4762 cnvco 4813 rnmpt 4876 resundi 4921 resundir 4922 resindi 4923 resindir 4924 rescom 4933 resima 4941 imadmrn 4981 cnvimarndm 4993 cnvi 5034 rnun 5038 imaundi 5042 cnvxp 5048 imainrect 5075 imacnvcnv 5094 resdmres 5121 imadmres 5122 mptpreima 5123 cbviota 5184 sb8iota 5186 resdif 5484 cbvriota 5841 dfoprab2 5922 cbvoprab1 5947 cbvoprab2 5948 cbvoprab12 5949 cbvoprab3 5951 cbvmpox 5953 resoprab 5971 caov32 6062 caov31 6064 ofmres 6137 dfopab2 6190 dfxp3 6195 dmmpossx 6200 fmpox 6201 tposco 6276 mapsncnv 6695 cbvixp 6715 xpcomco 6826 sbthlemi6 6961 xp2dju 7214 djuassen 7216 dmaddpi 7324 dmmulpi 7325 dfplpq2 7353 dfmpq2 7354 dmaddpq 7378 dmmulpq 7379 axi2m1 7874 negiso 8912 nummac 9428 decsubi 9446 9t11e99 9513 fzprval 10082 fztpval 10083 sqdivapi 10604 binom2i 10629 4bc2eq6 10754 shftidt2 10841 cji 10911 xrnegiso 11270 cbvsum 11368 fsumrelem 11479 cbvprod 11566 nn0gcdsq 12200 rmodislmod 13441 cnfldsub 13472 dvdsrzring 13496 restco 13677 cnmptid 13784 sincos3rdpi 14267 lgsdir2lem5 14436 2lgsoddprmlem3d 14461 if0ab 14560 |
Copyright terms: Public domain | W3C validator |