| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4i | GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
| 3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eqtr4i | ⊢ 𝐶 = 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
| 2 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 3 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 4 | 2, 3 | eqtr4i 2228 | . 2 ⊢ 𝐷 = 𝐴 |
| 5 | 1, 4 | eqtr4i 2228 | 1 ⊢ 𝐶 = 𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: rabswap 2684 rabbiia 2756 cbvrab 2769 cbvcsbw 3096 cbvcsb 3097 csbco 3102 csbcow 3103 cbvrabcsf 3158 un4 3332 in13 3385 in31 3386 in4 3388 indifcom 3418 indir 3421 undir 3422 notrab 3449 dfnul3 3462 rab0 3488 prcom 3708 tprot 3725 tpcoma 3726 tpcomb 3727 tpass 3728 qdassr 3730 pw0 3779 opid 3836 int0 3898 cbviun 3963 cbviin 3964 iunrab 3974 iunin1 3991 cbvopab 4114 cbvopab1 4116 cbvopab2 4117 cbvopab1s 4118 cbvopab2v 4120 unopab 4122 cbvmptf 4137 cbvmpt 4138 iunopab 4327 uniuni 4497 2ordpr 4571 rabxp 4711 fconstmpt 4721 inxp 4811 cnvco 4862 rnmpt 4925 resundi 4971 resundir 4972 resindi 4973 resindir 4974 rescom 4983 resima 4991 imadmrn 5031 cnvimarndm 5045 cnvi 5086 rnun 5090 imaundi 5094 cnvxp 5100 imainrect 5127 imacnvcnv 5146 resdmres 5173 imadmres 5174 mptpreima 5175 cbviota 5236 sb8iota 5238 resdif 5543 cbvriota 5909 dfoprab2 5991 cbvoprab1 6016 cbvoprab2 6017 cbvoprab12 6018 cbvoprab3 6020 cbvmpox 6022 resoprab 6040 caov32 6133 caov31 6135 ofmres 6220 dfopab2 6274 dfxp3 6279 dmmpossx 6284 fmpox 6285 tposco 6360 mapsncnv 6781 cbvixp 6801 xpcomco 6920 sbthlemi6 7063 xp2dju 7326 djuassen 7328 dmaddpi 7437 dmmulpi 7438 dfplpq2 7466 dfmpq2 7467 dmaddpq 7491 dmmulpq 7492 axi2m1 7987 negiso 9027 nummac 9547 decsubi 9565 9t11e99 9632 fzprval 10203 fztpval 10204 sqdivapi 10766 binom2i 10791 4bc2eq6 10917 shftidt2 11114 cji 11184 xrnegiso 11544 cbvsum 11642 fsumrelem 11753 cbvprod 11840 nn0gcdsq 12493 dec5nprm 12708 dec2nprm 12709 gcdi 12714 decsplit 12723 dfrhm2 13887 rmodislmod 14084 cnfldsub 14308 dvdsrzring 14336 restco 14617 cnmptid 14724 plyid 15189 sincos3rdpi 15286 lgsdir2lem5 15480 lgsquadlem3 15527 2lgslem1b 15537 2lgsoddprmlem3d 15558 if0ab 15703 |
| Copyright terms: Public domain | W3C validator |