| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4i | GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
| 3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eqtr4i | ⊢ 𝐶 = 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
| 2 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 3 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 4 | 2, 3 | eqtr4i 2253 | . 2 ⊢ 𝐷 = 𝐴 |
| 5 | 1, 4 | eqtr4i 2253 | 1 ⊢ 𝐶 = 𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: rabswap 2710 rabbiia 2784 cbvrab 2797 cbvcsbw 3128 cbvcsb 3129 csbco 3134 csbcow 3135 cbvrabcsf 3190 un4 3364 in13 3417 in31 3418 in4 3420 indifcom 3450 indir 3453 undir 3454 notrab 3481 dfnul3 3494 rab0 3520 prcom 3742 tprot 3759 tpcoma 3760 tpcomb 3761 tpass 3762 qdassr 3764 pw0 3814 opid 3874 int0 3936 cbviun 4001 cbviin 4002 iunrab 4012 iunin1 4029 cbvopab 4154 cbvopab1 4156 cbvopab2 4157 cbvopab1s 4158 cbvopab2v 4160 unopab 4162 cbvmptf 4177 cbvmpt 4178 iunopab 4369 uniuni 4541 2ordpr 4615 rabxp 4755 fconstmpt 4765 inxp 4855 cnvco 4906 rnmpt 4971 resundi 5017 resundir 5018 resindi 5019 resindir 5020 rescom 5029 resima 5037 imadmrn 5077 cnvimarndm 5091 cnvi 5132 rnun 5136 imaundi 5140 cnvxp 5146 imainrect 5173 imacnvcnv 5192 resdmres 5219 imadmres 5220 mptpreima 5221 cbviota 5282 cbviotavw 5283 sb8iota 5285 resdif 5593 cbvriotavw 5964 cbvriota 5965 dfoprab2 6050 cbvoprab1 6075 cbvoprab2 6076 cbvoprab12 6077 cbvoprab3 6079 cbvmpox 6081 resoprab 6099 caov32 6192 caov31 6194 ofmres 6279 dfopab2 6333 dfxp3 6338 dmmpossx 6343 fmpox 6344 tposco 6419 mapsncnv 6840 cbvixp 6860 xpcomco 6981 sbthlemi6 7125 xp2dju 7393 djuassen 7395 dmaddpi 7508 dmmulpi 7509 dfplpq2 7537 dfmpq2 7538 dmaddpq 7562 dmmulpq 7563 axi2m1 8058 negiso 9098 nummac 9618 decsubi 9636 9t11e99 9703 fzprval 10274 fztpval 10275 sqdivapi 10840 binom2i 10865 4bc2eq6 10991 shftidt2 11338 cji 11408 xrnegiso 11768 cbvsum 11866 fsumrelem 11977 cbvprod 12064 nn0gcdsq 12717 dec5nprm 12932 dec2nprm 12933 gcdi 12938 decsplit 12947 dfrhm2 14112 rmodislmod 14309 cnfldsub 14533 dvdsrzring 14561 restco 14842 cnmptid 14949 plyid 15414 sincos3rdpi 15511 lgsdir2lem5 15705 lgsquadlem3 15752 2lgslem1b 15762 2lgsoddprmlem3d 15783 vtxval0 15848 iedgval0 15849 if0ab 16127 |
| Copyright terms: Public domain | W3C validator |