| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4i | GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
| 3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eqtr4i | ⊢ 𝐶 = 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
| 2 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 3 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 4 | 2, 3 | eqtr4i 2220 | . 2 ⊢ 𝐷 = 𝐴 |
| 5 | 1, 4 | eqtr4i 2220 | 1 ⊢ 𝐶 = 𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: rabswap 2676 rabbiia 2748 cbvrab 2761 cbvcsbw 3088 cbvcsb 3089 csbco 3094 csbcow 3095 cbvrabcsf 3150 un4 3323 in13 3376 in31 3377 in4 3379 indifcom 3409 indir 3412 undir 3413 notrab 3440 dfnul3 3453 rab0 3479 prcom 3698 tprot 3715 tpcoma 3716 tpcomb 3717 tpass 3718 qdassr 3720 pw0 3769 opid 3826 int0 3888 cbviun 3953 cbviin 3954 iunrab 3964 iunin1 3981 cbvopab 4104 cbvopab1 4106 cbvopab2 4107 cbvopab1s 4108 cbvopab2v 4110 unopab 4112 cbvmptf 4127 cbvmpt 4128 iunopab 4316 uniuni 4486 2ordpr 4560 rabxp 4700 fconstmpt 4710 inxp 4800 cnvco 4851 rnmpt 4914 resundi 4959 resundir 4960 resindi 4961 resindir 4962 rescom 4971 resima 4979 imadmrn 5019 cnvimarndm 5033 cnvi 5074 rnun 5078 imaundi 5082 cnvxp 5088 imainrect 5115 imacnvcnv 5134 resdmres 5161 imadmres 5162 mptpreima 5163 cbviota 5224 sb8iota 5226 resdif 5526 cbvriota 5888 dfoprab2 5969 cbvoprab1 5994 cbvoprab2 5995 cbvoprab12 5996 cbvoprab3 5998 cbvmpox 6000 resoprab 6018 caov32 6111 caov31 6113 ofmres 6193 dfopab2 6247 dfxp3 6252 dmmpossx 6257 fmpox 6258 tposco 6333 mapsncnv 6754 cbvixp 6774 xpcomco 6885 sbthlemi6 7028 xp2dju 7282 djuassen 7284 dmaddpi 7392 dmmulpi 7393 dfplpq2 7421 dfmpq2 7422 dmaddpq 7446 dmmulpq 7447 axi2m1 7942 negiso 8982 nummac 9501 decsubi 9519 9t11e99 9586 fzprval 10157 fztpval 10158 sqdivapi 10715 binom2i 10740 4bc2eq6 10866 shftidt2 10997 cji 11067 xrnegiso 11427 cbvsum 11525 fsumrelem 11636 cbvprod 11723 nn0gcdsq 12368 dec5nprm 12583 dec2nprm 12584 gcdi 12589 decsplit 12598 dfrhm2 13710 rmodislmod 13907 cnfldsub 14131 dvdsrzring 14159 restco 14410 cnmptid 14517 plyid 14982 sincos3rdpi 15079 lgsdir2lem5 15273 lgsquadlem3 15320 2lgslem1b 15330 2lgsoddprmlem3d 15351 if0ab 15451 |
| Copyright terms: Public domain | W3C validator |