Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr4i | GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eqtr4i | ⊢ 𝐶 = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
2 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
3 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
4 | 2, 3 | eqtr4i 2194 | . 2 ⊢ 𝐷 = 𝐴 |
5 | 1, 4 | eqtr4i 2194 | 1 ⊢ 𝐶 = 𝐷 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: rabswap 2648 rabbiia 2715 cbvrab 2728 cbvcsbw 3053 cbvcsb 3054 csbco 3059 csbcow 3060 cbvrabcsf 3114 un4 3287 in13 3340 in31 3341 in4 3343 indifcom 3373 indir 3376 undir 3377 notrab 3404 dfnul3 3417 rab0 3443 prcom 3659 tprot 3676 tpcoma 3677 tpcomb 3678 tpass 3679 qdassr 3681 pw0 3727 opid 3783 int0 3845 cbviun 3910 cbviin 3911 iunrab 3920 iunin1 3937 cbvopab 4060 cbvopab1 4062 cbvopab2 4063 cbvopab1s 4064 cbvopab2v 4066 unopab 4068 cbvmptf 4083 cbvmpt 4084 iunopab 4266 uniuni 4436 2ordpr 4508 rabxp 4648 fconstmpt 4658 inxp 4745 cnvco 4796 rnmpt 4859 resundi 4904 resundir 4905 resindi 4906 resindir 4907 rescom 4916 resima 4924 imadmrn 4963 cnvimarndm 4975 cnvi 5015 rnun 5019 imaundi 5023 cnvxp 5029 imainrect 5056 imacnvcnv 5075 resdmres 5102 imadmres 5103 mptpreima 5104 cbviota 5165 sb8iota 5167 resdif 5464 cbvriota 5819 dfoprab2 5900 cbvoprab1 5925 cbvoprab2 5926 cbvoprab12 5927 cbvoprab3 5929 cbvmpox 5931 resoprab 5949 caov32 6040 caov31 6042 ofmres 6115 dfopab2 6168 dfxp3 6173 dmmpossx 6178 fmpox 6179 tposco 6254 mapsncnv 6673 cbvixp 6693 xpcomco 6804 sbthlemi6 6939 xp2dju 7192 djuassen 7194 dmaddpi 7287 dmmulpi 7288 dfplpq2 7316 dfmpq2 7317 dmaddpq 7341 dmmulpq 7342 axi2m1 7837 negiso 8871 nummac 9387 decsubi 9405 9t11e99 9472 fzprval 10038 fztpval 10039 sqdivapi 10559 binom2i 10584 4bc2eq6 10708 shftidt2 10796 cji 10866 xrnegiso 11225 cbvsum 11323 fsumrelem 11434 cbvprod 11521 nn0gcdsq 12154 restco 12968 cnmptid 13075 sincos3rdpi 13558 lgsdir2lem5 13727 if0ab 13840 |
Copyright terms: Public domain | W3C validator |