![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr4i | GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eqtr4i | ⊢ 𝐶 = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
2 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
3 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
4 | 2, 3 | eqtr4i 2217 | . 2 ⊢ 𝐷 = 𝐴 |
5 | 1, 4 | eqtr4i 2217 | 1 ⊢ 𝐶 = 𝐷 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: rabswap 2673 rabbiia 2745 cbvrab 2758 cbvcsbw 3085 cbvcsb 3086 csbco 3091 csbcow 3092 cbvrabcsf 3147 un4 3320 in13 3373 in31 3374 in4 3376 indifcom 3406 indir 3409 undir 3410 notrab 3437 dfnul3 3450 rab0 3476 prcom 3695 tprot 3712 tpcoma 3713 tpcomb 3714 tpass 3715 qdassr 3717 pw0 3766 opid 3823 int0 3885 cbviun 3950 cbviin 3951 iunrab 3961 iunin1 3978 cbvopab 4101 cbvopab1 4103 cbvopab2 4104 cbvopab1s 4105 cbvopab2v 4107 unopab 4109 cbvmptf 4124 cbvmpt 4125 iunopab 4313 uniuni 4483 2ordpr 4557 rabxp 4697 fconstmpt 4707 inxp 4797 cnvco 4848 rnmpt 4911 resundi 4956 resundir 4957 resindi 4958 resindir 4959 rescom 4968 resima 4976 imadmrn 5016 cnvimarndm 5030 cnvi 5071 rnun 5075 imaundi 5079 cnvxp 5085 imainrect 5112 imacnvcnv 5131 resdmres 5158 imadmres 5159 mptpreima 5160 cbviota 5221 sb8iota 5223 resdif 5523 cbvriota 5885 dfoprab2 5966 cbvoprab1 5991 cbvoprab2 5992 cbvoprab12 5993 cbvoprab3 5995 cbvmpox 5997 resoprab 6015 caov32 6108 caov31 6110 ofmres 6190 dfopab2 6244 dfxp3 6249 dmmpossx 6254 fmpox 6255 tposco 6330 mapsncnv 6751 cbvixp 6771 xpcomco 6882 sbthlemi6 7023 xp2dju 7277 djuassen 7279 dmaddpi 7387 dmmulpi 7388 dfplpq2 7416 dfmpq2 7417 dmaddpq 7441 dmmulpq 7442 axi2m1 7937 negiso 8976 nummac 9495 decsubi 9513 9t11e99 9580 fzprval 10151 fztpval 10152 sqdivapi 10697 binom2i 10722 4bc2eq6 10848 shftidt2 10979 cji 11049 xrnegiso 11408 cbvsum 11506 fsumrelem 11617 cbvprod 11704 nn0gcdsq 12341 dfrhm2 13653 rmodislmod 13850 cnfldsub 14074 dvdsrzring 14102 restco 14353 cnmptid 14460 plyid 14925 sincos3rdpi 15019 lgsdir2lem5 15189 lgsquadlem3 15236 2lgslem1b 15246 2lgsoddprmlem3d 15267 if0ab 15367 |
Copyright terms: Public domain | W3C validator |