| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4i | GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
| 3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eqtr4i | ⊢ 𝐶 = 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
| 2 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 3 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 4 | 2, 3 | eqtr4i 2231 | . 2 ⊢ 𝐷 = 𝐴 |
| 5 | 1, 4 | eqtr4i 2231 | 1 ⊢ 𝐶 = 𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: rabswap 2687 rabbiia 2761 cbvrab 2774 cbvcsbw 3105 cbvcsb 3106 csbco 3111 csbcow 3112 cbvrabcsf 3167 un4 3341 in13 3394 in31 3395 in4 3397 indifcom 3427 indir 3430 undir 3431 notrab 3458 dfnul3 3471 rab0 3497 prcom 3719 tprot 3736 tpcoma 3737 tpcomb 3738 tpass 3739 qdassr 3741 pw0 3791 opid 3851 int0 3913 cbviun 3978 cbviin 3979 iunrab 3989 iunin1 4006 cbvopab 4131 cbvopab1 4133 cbvopab2 4134 cbvopab1s 4135 cbvopab2v 4137 unopab 4139 cbvmptf 4154 cbvmpt 4155 iunopab 4346 uniuni 4516 2ordpr 4590 rabxp 4730 fconstmpt 4740 inxp 4830 cnvco 4881 rnmpt 4945 resundi 4991 resundir 4992 resindi 4993 resindir 4994 rescom 5003 resima 5011 imadmrn 5051 cnvimarndm 5065 cnvi 5106 rnun 5110 imaundi 5114 cnvxp 5120 imainrect 5147 imacnvcnv 5166 resdmres 5193 imadmres 5194 mptpreima 5195 cbviota 5256 sb8iota 5258 resdif 5566 cbvriota 5933 dfoprab2 6015 cbvoprab1 6040 cbvoprab2 6041 cbvoprab12 6042 cbvoprab3 6044 cbvmpox 6046 resoprab 6064 caov32 6157 caov31 6159 ofmres 6244 dfopab2 6298 dfxp3 6303 dmmpossx 6308 fmpox 6309 tposco 6384 mapsncnv 6805 cbvixp 6825 xpcomco 6946 sbthlemi6 7090 xp2dju 7358 djuassen 7360 dmaddpi 7473 dmmulpi 7474 dfplpq2 7502 dfmpq2 7503 dmaddpq 7527 dmmulpq 7528 axi2m1 8023 negiso 9063 nummac 9583 decsubi 9601 9t11e99 9668 fzprval 10239 fztpval 10240 sqdivapi 10805 binom2i 10830 4bc2eq6 10956 shftidt2 11258 cji 11328 xrnegiso 11688 cbvsum 11786 fsumrelem 11897 cbvprod 11984 nn0gcdsq 12637 dec5nprm 12852 dec2nprm 12853 gcdi 12858 decsplit 12867 dfrhm2 14031 rmodislmod 14228 cnfldsub 14452 dvdsrzring 14480 restco 14761 cnmptid 14868 plyid 15333 sincos3rdpi 15430 lgsdir2lem5 15624 lgsquadlem3 15671 2lgslem1b 15681 2lgsoddprmlem3d 15702 vtxval0 15765 iedgval0 15766 if0ab 15941 |
| Copyright terms: Public domain | W3C validator |