Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr4i | GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eqtr4i | ⊢ 𝐶 = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
2 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
3 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
4 | 2, 3 | eqtr4i 2189 | . 2 ⊢ 𝐷 = 𝐴 |
5 | 1, 4 | eqtr4i 2189 | 1 ⊢ 𝐶 = 𝐷 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: rabswap 2644 rabbiia 2711 cbvrab 2724 cbvcsbw 3049 cbvcsb 3050 csbco 3055 csbcow 3056 cbvrabcsf 3110 un4 3282 in13 3335 in31 3336 in4 3338 indifcom 3368 indir 3371 undir 3372 notrab 3399 dfnul3 3412 rab0 3437 prcom 3652 tprot 3669 tpcoma 3670 tpcomb 3671 tpass 3672 qdassr 3674 pw0 3720 opid 3776 int0 3838 cbviun 3903 cbviin 3904 iunrab 3913 iunin1 3930 cbvopab 4053 cbvopab1 4055 cbvopab2 4056 cbvopab1s 4057 cbvopab2v 4059 unopab 4061 cbvmptf 4076 cbvmpt 4077 iunopab 4259 uniuni 4429 2ordpr 4501 rabxp 4641 fconstmpt 4651 inxp 4738 cnvco 4789 rnmpt 4852 resundi 4897 resundir 4898 resindi 4899 resindir 4900 rescom 4909 resima 4917 imadmrn 4956 cnvimarndm 4968 cnvi 5008 rnun 5012 imaundi 5016 cnvxp 5022 imainrect 5049 imacnvcnv 5068 resdmres 5095 imadmres 5096 mptpreima 5097 cbviota 5158 sb8iota 5160 resdif 5454 cbvriota 5808 dfoprab2 5889 cbvoprab1 5914 cbvoprab2 5915 cbvoprab12 5916 cbvoprab3 5918 cbvmpox 5920 resoprab 5938 caov32 6029 caov31 6031 ofmres 6104 dfopab2 6157 dfxp3 6162 dmmpossx 6167 fmpox 6168 tposco 6243 mapsncnv 6661 cbvixp 6681 xpcomco 6792 sbthlemi6 6927 xp2dju 7171 djuassen 7173 dmaddpi 7266 dmmulpi 7267 dfplpq2 7295 dfmpq2 7296 dmaddpq 7320 dmmulpq 7321 axi2m1 7816 negiso 8850 nummac 9366 decsubi 9384 9t11e99 9451 fzprval 10017 fztpval 10018 sqdivapi 10538 binom2i 10563 4bc2eq6 10687 shftidt2 10774 cji 10844 xrnegiso 11203 cbvsum 11301 fsumrelem 11412 cbvprod 11499 nn0gcdsq 12132 restco 12814 cnmptid 12921 sincos3rdpi 13404 lgsdir2lem5 13573 if0ab 13687 |
Copyright terms: Public domain | W3C validator |