| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4i | GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
| 3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eqtr4i | ⊢ 𝐶 = 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
| 2 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 3 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 4 | 2, 3 | eqtr4i 2229 | . 2 ⊢ 𝐷 = 𝐴 |
| 5 | 1, 4 | eqtr4i 2229 | 1 ⊢ 𝐶 = 𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: rabswap 2685 rabbiia 2757 cbvrab 2770 cbvcsbw 3097 cbvcsb 3098 csbco 3103 csbcow 3104 cbvrabcsf 3159 un4 3333 in13 3386 in31 3387 in4 3389 indifcom 3419 indir 3422 undir 3423 notrab 3450 dfnul3 3463 rab0 3489 prcom 3709 tprot 3726 tpcoma 3727 tpcomb 3728 tpass 3729 qdassr 3731 pw0 3780 opid 3837 int0 3899 cbviun 3964 cbviin 3965 iunrab 3975 iunin1 3992 cbvopab 4115 cbvopab1 4117 cbvopab2 4118 cbvopab1s 4119 cbvopab2v 4121 unopab 4123 cbvmptf 4138 cbvmpt 4139 iunopab 4328 uniuni 4498 2ordpr 4572 rabxp 4712 fconstmpt 4722 inxp 4812 cnvco 4863 rnmpt 4926 resundi 4972 resundir 4973 resindi 4974 resindir 4975 rescom 4984 resima 4992 imadmrn 5032 cnvimarndm 5046 cnvi 5087 rnun 5091 imaundi 5095 cnvxp 5101 imainrect 5128 imacnvcnv 5147 resdmres 5174 imadmres 5175 mptpreima 5176 cbviota 5237 sb8iota 5239 resdif 5544 cbvriota 5910 dfoprab2 5992 cbvoprab1 6017 cbvoprab2 6018 cbvoprab12 6019 cbvoprab3 6021 cbvmpox 6023 resoprab 6041 caov32 6134 caov31 6136 ofmres 6221 dfopab2 6275 dfxp3 6280 dmmpossx 6285 fmpox 6286 tposco 6361 mapsncnv 6782 cbvixp 6802 xpcomco 6921 sbthlemi6 7064 xp2dju 7327 djuassen 7329 dmaddpi 7438 dmmulpi 7439 dfplpq2 7467 dfmpq2 7468 dmaddpq 7492 dmmulpq 7493 axi2m1 7988 negiso 9028 nummac 9548 decsubi 9566 9t11e99 9633 fzprval 10204 fztpval 10205 sqdivapi 10768 binom2i 10793 4bc2eq6 10919 shftidt2 11143 cji 11213 xrnegiso 11573 cbvsum 11671 fsumrelem 11782 cbvprod 11869 nn0gcdsq 12522 dec5nprm 12737 dec2nprm 12738 gcdi 12743 decsplit 12752 dfrhm2 13916 rmodislmod 14113 cnfldsub 14337 dvdsrzring 14365 restco 14646 cnmptid 14753 plyid 15218 sincos3rdpi 15315 lgsdir2lem5 15509 lgsquadlem3 15556 2lgslem1b 15566 2lgsoddprmlem3d 15587 vtxval0 15648 iedgval0 15649 if0ab 15741 |
| Copyright terms: Public domain | W3C validator |