| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralrp | GIF version | ||
| Description: Quantification over positive reals. (Contributed by NM, 12-Feb-2008.) |
| Ref | Expression |
|---|---|
| ralrp | ⊢ (∀𝑥 ∈ ℝ+ 𝜑 ↔ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrp 9851 | . . . 4 ⊢ (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) | |
| 2 | 1 | imbi1i 238 | . . 3 ⊢ ((𝑥 ∈ ℝ+ → 𝜑) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 𝜑)) |
| 3 | impexp 263 | . . 3 ⊢ (((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 𝜑) ↔ (𝑥 ∈ ℝ → (0 < 𝑥 → 𝜑))) | |
| 4 | 2, 3 | bitri 184 | . 2 ⊢ ((𝑥 ∈ ℝ+ → 𝜑) ↔ (𝑥 ∈ ℝ → (0 < 𝑥 → 𝜑))) |
| 5 | 4 | ralbii2 2540 | 1 ⊢ (∀𝑥 ∈ ℝ+ 𝜑 ↔ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 ∀wral 2508 class class class wbr 4083 ℝcr 7998 0cc0 7999 < clt 8181 ℝ+crp 9849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rab 2517 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-rp 9850 |
| This theorem is referenced by: caucvgre 11492 |
| Copyright terms: Public domain | W3C validator |