ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrp GIF version

Theorem ralrp 9312
Description: Quantification over positive reals. (Contributed by NM, 12-Feb-2008.)
Assertion
Ref Expression
ralrp (∀𝑥 ∈ ℝ+ 𝜑 ↔ ∀𝑥 ∈ ℝ (0 < 𝑥𝜑))

Proof of Theorem ralrp
StepHypRef Expression
1 elrp 9293 . . . 4 (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
21imbi1i 237 . . 3 ((𝑥 ∈ ℝ+𝜑) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 𝜑))
3 impexp 261 . . 3 (((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 𝜑) ↔ (𝑥 ∈ ℝ → (0 < 𝑥𝜑)))
42, 3bitri 183 . 2 ((𝑥 ∈ ℝ+𝜑) ↔ (𝑥 ∈ ℝ → (0 < 𝑥𝜑)))
54ralbii2 2404 1 (∀𝑥 ∈ ℝ+ 𝜑 ↔ ∀𝑥 ∈ ℝ (0 < 𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 1448  wral 2375   class class class wbr 3875  cr 7499  0cc0 7500   < clt 7672  +crp 9291
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rab 2384  df-v 2643  df-un 3025  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876  df-rp 9292
This theorem is referenced by:  caucvgre  10593
  Copyright terms: Public domain W3C validator