![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralrp | GIF version |
Description: Quantification over positive reals. (Contributed by NM, 12-Feb-2008.) |
Ref | Expression |
---|---|
ralrp | ⊢ (∀𝑥 ∈ ℝ+ 𝜑 ↔ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrp 9721 | . . . 4 ⊢ (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) | |
2 | 1 | imbi1i 238 | . . 3 ⊢ ((𝑥 ∈ ℝ+ → 𝜑) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 𝜑)) |
3 | impexp 263 | . . 3 ⊢ (((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 𝜑) ↔ (𝑥 ∈ ℝ → (0 < 𝑥 → 𝜑))) | |
4 | 2, 3 | bitri 184 | . 2 ⊢ ((𝑥 ∈ ℝ+ → 𝜑) ↔ (𝑥 ∈ ℝ → (0 < 𝑥 → 𝜑))) |
5 | 4 | ralbii2 2504 | 1 ⊢ (∀𝑥 ∈ ℝ+ 𝜑 ↔ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 ∀wral 2472 class class class wbr 4029 ℝcr 7871 0cc0 7872 < clt 8054 ℝ+crp 9719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rab 2481 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-rp 9720 |
This theorem is referenced by: caucvgre 11125 |
Copyright terms: Public domain | W3C validator |