Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralrp | GIF version |
Description: Quantification over positive reals. (Contributed by NM, 12-Feb-2008.) |
Ref | Expression |
---|---|
ralrp | ⊢ (∀𝑥 ∈ ℝ+ 𝜑 ↔ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrp 9555 | . . . 4 ⊢ (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) | |
2 | 1 | imbi1i 237 | . . 3 ⊢ ((𝑥 ∈ ℝ+ → 𝜑) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 𝜑)) |
3 | impexp 261 | . . 3 ⊢ (((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 𝜑) ↔ (𝑥 ∈ ℝ → (0 < 𝑥 → 𝜑))) | |
4 | 2, 3 | bitri 183 | . 2 ⊢ ((𝑥 ∈ ℝ+ → 𝜑) ↔ (𝑥 ∈ ℝ → (0 < 𝑥 → 𝜑))) |
5 | 4 | ralbii2 2467 | 1 ⊢ (∀𝑥 ∈ ℝ+ 𝜑 ↔ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2128 ∀wral 2435 class class class wbr 3965 ℝcr 7725 0cc0 7726 < clt 7906 ℝ+crp 9553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rab 2444 df-v 2714 df-un 3106 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-rp 9554 |
This theorem is referenced by: caucvgre 10874 |
Copyright terms: Public domain | W3C validator |