Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrab GIF version

Theorem ralrab 2850
 Description: Universal quantification over a restricted class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypothesis
Ref Expression
ralab.1 (𝑦 = 𝑥 → (𝜑𝜓))
Assertion
Ref Expression
ralrab (∀𝑥 ∈ {𝑦𝐴𝜑}𝜒 ↔ ∀𝑥𝐴 (𝜓𝜒))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝜒(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem ralrab
StepHypRef Expression
1 ralab.1 . . . . 5 (𝑦 = 𝑥 → (𝜑𝜓))
21elrab 2845 . . . 4 (𝑥 ∈ {𝑦𝐴𝜑} ↔ (𝑥𝐴𝜓))
32imbi1i 237 . . 3 ((𝑥 ∈ {𝑦𝐴𝜑} → 𝜒) ↔ ((𝑥𝐴𝜓) → 𝜒))
4 impexp 261 . . 3 (((𝑥𝐴𝜓) → 𝜒) ↔ (𝑥𝐴 → (𝜓𝜒)))
53, 4bitri 183 . 2 ((𝑥 ∈ {𝑦𝐴𝜑} → 𝜒) ↔ (𝑥𝐴 → (𝜓𝜒)))
65ralbii2 2449 1 (∀𝑥 ∈ {𝑦𝐴𝜑}𝜒 ↔ ∀𝑥𝐴 (𝜓𝜒))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∈ wcel 1481  ∀wral 2417  {crab 2421 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rab 2426  df-v 2692 This theorem is referenced by:  limcdifap  12862
 Copyright terms: Public domain W3C validator