ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raluz2 GIF version

Theorem raluz2 9581
Description: Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
Assertion
Ref Expression
raluz2 (∀𝑛 ∈ (ℤ𝑀)𝜑 ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀𝑛𝜑)))
Distinct variable group:   𝑛,𝑀
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem raluz2
StepHypRef Expression
1 eluz2 9536 . . . . . 6 (𝑛 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀𝑛))
2 3anass 982 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀𝑛) ↔ (𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀𝑛)))
31, 2bitri 184 . . . . 5 (𝑛 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀𝑛)))
43imbi1i 238 . . . 4 ((𝑛 ∈ (ℤ𝑀) → 𝜑) ↔ ((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀𝑛)) → 𝜑))
5 impexp 263 . . . . . 6 (((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀𝑛)) → 𝜑) ↔ (𝑀 ∈ ℤ → ((𝑛 ∈ ℤ ∧ 𝑀𝑛) → 𝜑)))
6 impexp 263 . . . . . . 7 (((𝑛 ∈ ℤ ∧ 𝑀𝑛) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀𝑛𝜑)))
76imbi2i 226 . . . . . 6 ((𝑀 ∈ ℤ → ((𝑛 ∈ ℤ ∧ 𝑀𝑛) → 𝜑)) ↔ (𝑀 ∈ ℤ → (𝑛 ∈ ℤ → (𝑀𝑛𝜑))))
85, 7bitri 184 . . . . 5 (((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀𝑛)) → 𝜑) ↔ (𝑀 ∈ ℤ → (𝑛 ∈ ℤ → (𝑀𝑛𝜑))))
9 bi2.04 248 . . . . 5 ((𝑀 ∈ ℤ → (𝑛 ∈ ℤ → (𝑀𝑛𝜑))) ↔ (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀𝑛𝜑))))
108, 9bitri 184 . . . 4 (((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀𝑛)) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀𝑛𝜑))))
114, 10bitri 184 . . 3 ((𝑛 ∈ (ℤ𝑀) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀𝑛𝜑))))
1211ralbii2 2487 . 2 (∀𝑛 ∈ (ℤ𝑀)𝜑 ↔ ∀𝑛 ∈ ℤ (𝑀 ∈ ℤ → (𝑀𝑛𝜑)))
13 r19.21v 2554 . 2 (∀𝑛 ∈ ℤ (𝑀 ∈ ℤ → (𝑀𝑛𝜑)) ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀𝑛𝜑)))
1412, 13bitri 184 1 (∀𝑛 ∈ (ℤ𝑀)𝜑 ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀𝑛𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978  wcel 2148  wral 2455   class class class wbr 4005  cfv 5218  cle 7995  cz 9255  cuz 9530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-cnex 7904  ax-resscn 7905
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-neg 8133  df-z 9256  df-uz 9531
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator