ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raluz2 GIF version

Theorem raluz2 9774
Description: Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
Assertion
Ref Expression
raluz2 (∀𝑛 ∈ (ℤ𝑀)𝜑 ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀𝑛𝜑)))
Distinct variable group:   𝑛,𝑀
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem raluz2
StepHypRef Expression
1 eluz2 9728 . . . . . 6 (𝑛 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀𝑛))
2 3anass 1006 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀𝑛) ↔ (𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀𝑛)))
31, 2bitri 184 . . . . 5 (𝑛 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀𝑛)))
43imbi1i 238 . . . 4 ((𝑛 ∈ (ℤ𝑀) → 𝜑) ↔ ((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀𝑛)) → 𝜑))
5 impexp 263 . . . . . 6 (((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀𝑛)) → 𝜑) ↔ (𝑀 ∈ ℤ → ((𝑛 ∈ ℤ ∧ 𝑀𝑛) → 𝜑)))
6 impexp 263 . . . . . . 7 (((𝑛 ∈ ℤ ∧ 𝑀𝑛) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀𝑛𝜑)))
76imbi2i 226 . . . . . 6 ((𝑀 ∈ ℤ → ((𝑛 ∈ ℤ ∧ 𝑀𝑛) → 𝜑)) ↔ (𝑀 ∈ ℤ → (𝑛 ∈ ℤ → (𝑀𝑛𝜑))))
85, 7bitri 184 . . . . 5 (((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀𝑛)) → 𝜑) ↔ (𝑀 ∈ ℤ → (𝑛 ∈ ℤ → (𝑀𝑛𝜑))))
9 bi2.04 248 . . . . 5 ((𝑀 ∈ ℤ → (𝑛 ∈ ℤ → (𝑀𝑛𝜑))) ↔ (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀𝑛𝜑))))
108, 9bitri 184 . . . 4 (((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀𝑛)) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀𝑛𝜑))))
114, 10bitri 184 . . 3 ((𝑛 ∈ (ℤ𝑀) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀𝑛𝜑))))
1211ralbii2 2540 . 2 (∀𝑛 ∈ (ℤ𝑀)𝜑 ↔ ∀𝑛 ∈ ℤ (𝑀 ∈ ℤ → (𝑀𝑛𝜑)))
13 r19.21v 2607 . 2 (∀𝑛 ∈ ℤ (𝑀 ∈ ℤ → (𝑀𝑛𝜑)) ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀𝑛𝜑)))
1412, 13bitri 184 1 (∀𝑛 ∈ (ℤ𝑀)𝜑 ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀𝑛𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002  wcel 2200  wral 2508   class class class wbr 4083  cfv 5318  cle 8182  cz 9446  cuz 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-cnex 8090  ax-resscn 8091
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-neg 8320  df-z 9447  df-uz 9723
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator