![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > raluz2 | GIF version |
Description: Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
Ref | Expression |
---|---|
raluz2 | ⊢ (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 9182 | . . . . . 6 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) | |
2 | 3anass 934 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) ↔ (𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛))) | |
3 | 1, 2 | bitri 183 | . . . . 5 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛))) |
4 | 3 | imbi1i 237 | . . . 4 ⊢ ((𝑛 ∈ (ℤ≥‘𝑀) → 𝜑) ↔ ((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) → 𝜑)) |
5 | impexp 261 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) → 𝜑) ↔ (𝑀 ∈ ℤ → ((𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) → 𝜑))) | |
6 | impexp 261 | . . . . . . 7 ⊢ (((𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑))) | |
7 | 6 | imbi2i 225 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ → ((𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) → 𝜑)) ↔ (𝑀 ∈ ℤ → (𝑛 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)))) |
8 | 5, 7 | bitri 183 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) → 𝜑) ↔ (𝑀 ∈ ℤ → (𝑛 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)))) |
9 | bi2.04 247 | . . . . 5 ⊢ ((𝑀 ∈ ℤ → (𝑛 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑))) ↔ (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)))) | |
10 | 8, 9 | bitri 183 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)))) |
11 | 4, 10 | bitri 183 | . . 3 ⊢ ((𝑛 ∈ (ℤ≥‘𝑀) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)))) |
12 | 11 | ralbii2 2404 | . 2 ⊢ (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∀𝑛 ∈ ℤ (𝑀 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑))) |
13 | r19.21v 2468 | . 2 ⊢ (∀𝑛 ∈ ℤ (𝑀 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)) ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) | |
14 | 12, 13 | bitri 183 | 1 ⊢ (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 930 ∈ wcel 1448 ∀wral 2375 class class class wbr 3875 ‘cfv 5059 ≤ cle 7673 ℤcz 8906 ℤ≥cuz 9176 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-cnex 7586 ax-resscn 7587 |
This theorem depends on definitions: df-bi 116 df-3or 931 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-rab 2384 df-v 2643 df-sbc 2863 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-br 3876 df-opab 3930 df-mpt 3931 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-fv 5067 df-ov 5709 df-neg 7807 df-z 8907 df-uz 9177 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |