![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > raluz2 | GIF version |
Description: Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
Ref | Expression |
---|---|
raluz2 | ⊢ (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 9536 | . . . . . 6 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) | |
2 | 3anass 982 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) ↔ (𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛))) | |
3 | 1, 2 | bitri 184 | . . . . 5 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛))) |
4 | 3 | imbi1i 238 | . . . 4 ⊢ ((𝑛 ∈ (ℤ≥‘𝑀) → 𝜑) ↔ ((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) → 𝜑)) |
5 | impexp 263 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) → 𝜑) ↔ (𝑀 ∈ ℤ → ((𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) → 𝜑))) | |
6 | impexp 263 | . . . . . . 7 ⊢ (((𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑))) | |
7 | 6 | imbi2i 226 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ → ((𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) → 𝜑)) ↔ (𝑀 ∈ ℤ → (𝑛 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)))) |
8 | 5, 7 | bitri 184 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) → 𝜑) ↔ (𝑀 ∈ ℤ → (𝑛 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)))) |
9 | bi2.04 248 | . . . . 5 ⊢ ((𝑀 ∈ ℤ → (𝑛 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑))) ↔ (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)))) | |
10 | 8, 9 | bitri 184 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)))) |
11 | 4, 10 | bitri 184 | . . 3 ⊢ ((𝑛 ∈ (ℤ≥‘𝑀) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)))) |
12 | 11 | ralbii2 2487 | . 2 ⊢ (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∀𝑛 ∈ ℤ (𝑀 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑))) |
13 | r19.21v 2554 | . 2 ⊢ (∀𝑛 ∈ ℤ (𝑀 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)) ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) | |
14 | 12, 13 | bitri 184 | 1 ⊢ (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 ∈ wcel 2148 ∀wral 2455 class class class wbr 4005 ‘cfv 5218 ≤ cle 7995 ℤcz 9255 ℤ≥cuz 9530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-cnex 7904 ax-resscn 7905 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-ov 5880 df-neg 8133 df-z 9256 df-uz 9531 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |