ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raldifb GIF version

Theorem raldifb 3303
Description: Restricted universal quantification on a class difference in terms of an implication. (Contributed by Alexander van der Vekens, 3-Jan-2018.)
Assertion
Ref Expression
raldifb (∀𝑥𝐴 (𝑥𝐵𝜑) ↔ ∀𝑥 ∈ (𝐴𝐵)𝜑)

Proof of Theorem raldifb
StepHypRef Expression
1 impexp 263 . . . 4 (((𝑥𝐴𝑥𝐵) → 𝜑) ↔ (𝑥𝐴 → (𝑥𝐵𝜑)))
21bicomi 132 . . 3 ((𝑥𝐴 → (𝑥𝐵𝜑)) ↔ ((𝑥𝐴𝑥𝐵) → 𝜑))
3 df-nel 2463 . . . . . 6 (𝑥𝐵 ↔ ¬ 𝑥𝐵)
43anbi2i 457 . . . . 5 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
5 eldif 3166 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
65bicomi 132 . . . . 5 ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ↔ 𝑥 ∈ (𝐴𝐵))
74, 6bitri 184 . . . 4 ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ (𝐴𝐵))
87imbi1i 238 . . 3 (((𝑥𝐴𝑥𝐵) → 𝜑) ↔ (𝑥 ∈ (𝐴𝐵) → 𝜑))
92, 8bitri 184 . 2 ((𝑥𝐴 → (𝑥𝐵𝜑)) ↔ (𝑥 ∈ (𝐴𝐵) → 𝜑))
109ralbii2 2507 1 (∀𝑥𝐴 (𝑥𝐵𝜑) ↔ ∀𝑥 ∈ (𝐴𝐵)𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wcel 2167  wnel 2462  wral 2475  cdif 3154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-nel 2463  df-ral 2480  df-v 2765  df-dif 3159
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator