| Step | Hyp | Ref
 | Expression | 
| 1 |   | dftr3 4135 | 
. . . . . 6
⊢ (Tr 𝑥 ↔ ∀𝑦 ∈ 𝑥 𝑦 ⊆ 𝑥) | 
| 2 | 1 | ralbii 2503 | 
. . . . 5
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 𝑦 ⊆ 𝑥) | 
| 3 | 2 | biimpi 120 | 
. . . 4
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 𝑦 ⊆ 𝑥) | 
| 4 |   | df-ral 2480 | 
. . . . . 6
⊢
(∀𝑦 ∈
𝑥 𝑦 ⊆ 𝑥 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) | 
| 5 | 4 | ralbii 2503 | 
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝑥 𝑦 ⊆ 𝑥 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) | 
| 6 |   | ralcom4 2785 | 
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) | 
| 7 | 5, 6 | bitri 184 | 
. . . 4
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝑥 𝑦 ⊆ 𝑥 ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) | 
| 8 | 3, 7 | sylib 122 | 
. . 3
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥)) | 
| 9 |   | ralim 2556 | 
. . . 4
⊢
(∀𝑥 ∈
𝐴 (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥) → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 → ∀𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥)) | 
| 10 | 9 | alimi 1469 | 
. . 3
⊢
(∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥) → ∀𝑦(∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 → ∀𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥)) | 
| 11 | 8, 10 | syl 14 | 
. 2
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ∀𝑦(∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 → ∀𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥)) | 
| 12 |   | dftr3 4135 | 
. . 3
⊢ (Tr ∩ 𝐴
↔ ∀𝑦 ∈
∩ 𝐴𝑦 ⊆ ∩ 𝐴) | 
| 13 |   | df-ral 2480 | 
. . . 4
⊢
(∀𝑦 ∈
∩ 𝐴𝑦 ⊆ ∩ 𝐴 ↔ ∀𝑦(𝑦 ∈ ∩ 𝐴 → 𝑦 ⊆ ∩ 𝐴)) | 
| 14 |   | vex 2766 | 
. . . . . . 7
⊢ 𝑦 ∈ V | 
| 15 | 14 | elint2 3881 | 
. . . . . 6
⊢ (𝑦 ∈ ∩ 𝐴
↔ ∀𝑥 ∈
𝐴 𝑦 ∈ 𝑥) | 
| 16 |   | ssint 3890 | 
. . . . . 6
⊢ (𝑦 ⊆ ∩ 𝐴
↔ ∀𝑥 ∈
𝐴 𝑦 ⊆ 𝑥) | 
| 17 | 15, 16 | imbi12i 239 | 
. . . . 5
⊢ ((𝑦 ∈ ∩ 𝐴
→ 𝑦 ⊆ ∩ 𝐴)
↔ (∀𝑥 ∈
𝐴 𝑦 ∈ 𝑥 → ∀𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥)) | 
| 18 | 17 | albii 1484 | 
. . . 4
⊢
(∀𝑦(𝑦 ∈ ∩ 𝐴
→ 𝑦 ⊆ ∩ 𝐴)
↔ ∀𝑦(∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 → ∀𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥)) | 
| 19 | 13, 18 | bitri 184 | 
. . 3
⊢
(∀𝑦 ∈
∩ 𝐴𝑦 ⊆ ∩ 𝐴 ↔ ∀𝑦(∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 → ∀𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥)) | 
| 20 | 12, 19 | bitri 184 | 
. 2
⊢ (Tr ∩ 𝐴
↔ ∀𝑦(∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 → ∀𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥)) | 
| 21 | 11, 20 | sylibr 134 | 
1
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → Tr ∩ 𝐴) |