ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trint GIF version

Theorem trint 4102
Description: The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. (Contributed by Scott Fenton, 25-Feb-2011.)
Assertion
Ref Expression
trint (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem trint
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dftr3 4091 . . . . . 6 (Tr 𝑥 ↔ ∀𝑦𝑥 𝑦𝑥)
21ralbii 2476 . . . . 5 (∀𝑥𝐴 Tr 𝑥 ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝑥)
32biimpi 119 . . . 4 (∀𝑥𝐴 Tr 𝑥 → ∀𝑥𝐴𝑦𝑥 𝑦𝑥)
4 df-ral 2453 . . . . . 6 (∀𝑦𝑥 𝑦𝑥 ↔ ∀𝑦(𝑦𝑥𝑦𝑥))
54ralbii 2476 . . . . 5 (∀𝑥𝐴𝑦𝑥 𝑦𝑥 ↔ ∀𝑥𝐴𝑦(𝑦𝑥𝑦𝑥))
6 ralcom4 2752 . . . . 5 (∀𝑥𝐴𝑦(𝑦𝑥𝑦𝑥) ↔ ∀𝑦𝑥𝐴 (𝑦𝑥𝑦𝑥))
75, 6bitri 183 . . . 4 (∀𝑥𝐴𝑦𝑥 𝑦𝑥 ↔ ∀𝑦𝑥𝐴 (𝑦𝑥𝑦𝑥))
83, 7sylib 121 . . 3 (∀𝑥𝐴 Tr 𝑥 → ∀𝑦𝑥𝐴 (𝑦𝑥𝑦𝑥))
9 ralim 2529 . . . 4 (∀𝑥𝐴 (𝑦𝑥𝑦𝑥) → (∀𝑥𝐴 𝑦𝑥 → ∀𝑥𝐴 𝑦𝑥))
109alimi 1448 . . 3 (∀𝑦𝑥𝐴 (𝑦𝑥𝑦𝑥) → ∀𝑦(∀𝑥𝐴 𝑦𝑥 → ∀𝑥𝐴 𝑦𝑥))
118, 10syl 14 . 2 (∀𝑥𝐴 Tr 𝑥 → ∀𝑦(∀𝑥𝐴 𝑦𝑥 → ∀𝑥𝐴 𝑦𝑥))
12 dftr3 4091 . . 3 (Tr 𝐴 ↔ ∀𝑦 𝐴𝑦 𝐴)
13 df-ral 2453 . . . 4 (∀𝑦 𝐴𝑦 𝐴 ↔ ∀𝑦(𝑦 𝐴𝑦 𝐴))
14 vex 2733 . . . . . . 7 𝑦 ∈ V
1514elint2 3838 . . . . . 6 (𝑦 𝐴 ↔ ∀𝑥𝐴 𝑦𝑥)
16 ssint 3847 . . . . . 6 (𝑦 𝐴 ↔ ∀𝑥𝐴 𝑦𝑥)
1715, 16imbi12i 238 . . . . 5 ((𝑦 𝐴𝑦 𝐴) ↔ (∀𝑥𝐴 𝑦𝑥 → ∀𝑥𝐴 𝑦𝑥))
1817albii 1463 . . . 4 (∀𝑦(𝑦 𝐴𝑦 𝐴) ↔ ∀𝑦(∀𝑥𝐴 𝑦𝑥 → ∀𝑥𝐴 𝑦𝑥))
1913, 18bitri 183 . . 3 (∀𝑦 𝐴𝑦 𝐴 ↔ ∀𝑦(∀𝑥𝐴 𝑦𝑥 → ∀𝑥𝐴 𝑦𝑥))
2012, 19bitri 183 . 2 (Tr 𝐴 ↔ ∀𝑦(∀𝑥𝐴 𝑦𝑥 → ∀𝑥𝐴 𝑦𝑥))
2111, 20sylibr 133 1 (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1346  wcel 2141  wral 2448  wss 3121   cint 3831  Tr wtr 4087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-in 3127  df-ss 3134  df-uni 3797  df-int 3832  df-tr 4088
This theorem is referenced by:  onintonm  4501
  Copyright terms: Public domain W3C validator