ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reurex GIF version

Theorem reurex 2688
Description: Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.)
Assertion
Ref Expression
reurex (∃!𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜑)

Proof of Theorem reurex
StepHypRef Expression
1 reu5 2687 . 2 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
21simplbi 274 1 (∃!𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wrex 2454  ∃!wreu 2455  ∃*wrmo 2456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-rex 2459  df-reu 2460  df-rmo 2461
This theorem is referenced by:  reu3  2925  prsrriota  7762  elrealeu  7803  modprm0  12221  issrgid  12970  isringid  13014  ivthinc  13701
  Copyright terms: Public domain W3C validator