ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reurex GIF version

Theorem reurex 2683
Description: Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.)
Assertion
Ref Expression
reurex (∃!𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜑)

Proof of Theorem reurex
StepHypRef Expression
1 reu5 2682 . 2 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
21simplbi 272 1 (∃!𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wrex 2449  ∃!wreu 2450  ∃*wrmo 2451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-rex 2454  df-reu 2455  df-rmo 2456
This theorem is referenced by:  reu3  2920  prsrriota  7750  elrealeu  7791  modprm0  12208  ivthinc  13415
  Copyright terms: Public domain W3C validator