| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reu5 | GIF version | ||
| Description: Restricted uniqueness in terms of "at most one". (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| reu5 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eu5 2102 | . 2 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 2 | df-reu 2492 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | df-rex 2491 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 4 | df-rmo 2493 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | 3, 4 | anbi12i 460 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 6 | 1, 2, 5 | 3bitr4i 212 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1516 ∃!weu 2055 ∃*wmo 2056 ∈ wcel 2177 ∃wrex 2486 ∃!wreu 2487 ∃*wrmo 2488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-rex 2491 df-reu 2492 df-rmo 2493 |
| This theorem is referenced by: reurex 2725 reurmo 2726 reu4 2971 reueq 2976 reusv1 4513 fncnv 5349 moriotass 5941 supeuti 7111 infeuti 7146 lteupri 7750 elrealeu 7962 rereceu 8022 exbtwnz 10415 rersqreu 11414 divalglemeunn 12307 divalglemeuneg 12309 bezoutlemeu 12403 pw2dvdseu 12565 ismgmid 13284 mndideu 13333 dedekindeu 15170 dedekindicclemicc 15179 |
| Copyright terms: Public domain | W3C validator |