ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reu5 GIF version

Theorem reu5 2749
Description: Restricted uniqueness in terms of "at most one". (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
reu5 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))

Proof of Theorem reu5
StepHypRef Expression
1 eu5 2125 . 2 (∃!𝑥(𝑥𝐴𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃*𝑥(𝑥𝐴𝜑)))
2 df-reu 2515 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
3 df-rex 2514 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-rmo 2516 . . 3 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
53, 4anbi12i 460 . 2 ((∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃*𝑥(𝑥𝐴𝜑)))
61, 2, 53bitr4i 212 1 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1538  ∃!weu 2077  ∃*wmo 2078  wcel 2200  wrex 2509  ∃!wreu 2510  ∃*wrmo 2511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-rex 2514  df-reu 2515  df-rmo 2516
This theorem is referenced by:  reurex  2750  reurmo  2751  cbvreuw  2760  reu4  2997  reueq  3002  reusv1  4548  fncnv  5386  moriotass  5984  supeuti  7157  infeuti  7192  lteupri  7800  elrealeu  8012  rereceu  8072  exbtwnz  10465  rersqreu  11534  divalglemeunn  12427  divalglemeuneg  12429  bezoutlemeu  12523  pw2dvdseu  12685  ismgmid  13405  mndideu  13454  dedekindeu  15291  dedekindicclemicc  15300
  Copyright terms: Public domain W3C validator