ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reu5 GIF version

Theorem reu5 2724
Description: Restricted uniqueness in terms of "at most one". (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
reu5 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))

Proof of Theorem reu5
StepHypRef Expression
1 eu5 2102 . 2 (∃!𝑥(𝑥𝐴𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃*𝑥(𝑥𝐴𝜑)))
2 df-reu 2492 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
3 df-rex 2491 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-rmo 2493 . . 3 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
53, 4anbi12i 460 . 2 ((∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃*𝑥(𝑥𝐴𝜑)))
61, 2, 53bitr4i 212 1 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1516  ∃!weu 2055  ∃*wmo 2056  wcel 2177  wrex 2486  ∃!wreu 2487  ∃*wrmo 2488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-rex 2491  df-reu 2492  df-rmo 2493
This theorem is referenced by:  reurex  2725  reurmo  2726  reu4  2971  reueq  2976  reusv1  4513  fncnv  5349  moriotass  5941  supeuti  7111  infeuti  7146  lteupri  7750  elrealeu  7962  rereceu  8022  exbtwnz  10415  rersqreu  11414  divalglemeunn  12307  divalglemeuneg  12309  bezoutlemeu  12403  pw2dvdseu  12565  ismgmid  13284  mndideu  13333  dedekindeu  15170  dedekindicclemicc  15179
  Copyright terms: Public domain W3C validator