ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexab2 GIF version

Theorem rexab2 2878
Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab2.1 (𝑥 = 𝑦 → (𝜓𝜒))
Assertion
Ref Expression
rexab2 (∃𝑥 ∈ {𝑦𝜑}𝜓 ↔ ∃𝑦(𝜑𝜒))
Distinct variable groups:   𝑥,𝑦   𝜒,𝑥   𝜑,𝑥   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem rexab2
StepHypRef Expression
1 df-rex 2441 . 2 (∃𝑥 ∈ {𝑦𝜑}𝜓 ↔ ∃𝑥(𝑥 ∈ {𝑦𝜑} ∧ 𝜓))
2 nfsab1 2147 . . . 4 𝑦 𝑥 ∈ {𝑦𝜑}
3 nfv 1508 . . . 4 𝑦𝜓
42, 3nfan 1545 . . 3 𝑦(𝑥 ∈ {𝑦𝜑} ∧ 𝜓)
5 nfv 1508 . . 3 𝑥(𝜑𝜒)
6 eleq1 2220 . . . . 5 (𝑥 = 𝑦 → (𝑥 ∈ {𝑦𝜑} ↔ 𝑦 ∈ {𝑦𝜑}))
7 abid 2145 . . . . 5 (𝑦 ∈ {𝑦𝜑} ↔ 𝜑)
86, 7bitrdi 195 . . . 4 (𝑥 = 𝑦 → (𝑥 ∈ {𝑦𝜑} ↔ 𝜑))
9 ralab2.1 . . . 4 (𝑥 = 𝑦 → (𝜓𝜒))
108, 9anbi12d 465 . . 3 (𝑥 = 𝑦 → ((𝑥 ∈ {𝑦𝜑} ∧ 𝜓) ↔ (𝜑𝜒)))
114, 5, 10cbvex 1736 . 2 (∃𝑥(𝑥 ∈ {𝑦𝜑} ∧ 𝜓) ↔ ∃𝑦(𝜑𝜒))
121, 11bitri 183 1 (∃𝑥 ∈ {𝑦𝜑}𝜓 ↔ ∃𝑦(𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wex 1472  wcel 2128  {cab 2143  wrex 2436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-11 1486  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-rex 2441
This theorem is referenced by:  rexrab2  2879
  Copyright terms: Public domain W3C validator