ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrab2 GIF version

Theorem ralrab2 2891
Description: Universal quantification over a restricted class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab2.1 (𝑥 = 𝑦 → (𝜓𝜒))
Assertion
Ref Expression
ralrab2 (∀𝑥 ∈ {𝑦𝐴𝜑}𝜓 ↔ ∀𝑦𝐴 (𝜑𝜒))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜒,𝑥   𝜑,𝑥   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑦)

Proof of Theorem ralrab2
StepHypRef Expression
1 df-rab 2453 . . 3 {𝑦𝐴𝜑} = {𝑦 ∣ (𝑦𝐴𝜑)}
21raleqi 2665 . 2 (∀𝑥 ∈ {𝑦𝐴𝜑}𝜓 ↔ ∀𝑥 ∈ {𝑦 ∣ (𝑦𝐴𝜑)}𝜓)
3 ralab2.1 . . 3 (𝑥 = 𝑦 → (𝜓𝜒))
43ralab2 2890 . 2 (∀𝑥 ∈ {𝑦 ∣ (𝑦𝐴𝜑)}𝜓 ↔ ∀𝑦((𝑦𝐴𝜑) → 𝜒))
5 impexp 261 . . . 4 (((𝑦𝐴𝜑) → 𝜒) ↔ (𝑦𝐴 → (𝜑𝜒)))
65albii 1458 . . 3 (∀𝑦((𝑦𝐴𝜑) → 𝜒) ↔ ∀𝑦(𝑦𝐴 → (𝜑𝜒)))
7 df-ral 2449 . . 3 (∀𝑦𝐴 (𝜑𝜒) ↔ ∀𝑦(𝑦𝐴 → (𝜑𝜒)))
86, 7bitr4i 186 . 2 (∀𝑦((𝑦𝐴𝜑) → 𝜒) ↔ ∀𝑦𝐴 (𝜑𝜒))
92, 4, 83bitri 205 1 (∀𝑥 ∈ {𝑦𝐴𝜑}𝜓 ↔ ∀𝑦𝐴 (𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1341  wcel 2136  {cab 2151  wral 2444  {crab 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rab 2453
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator