ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrab2 GIF version

Theorem ralrab2 2945
Description: Universal quantification over a restricted class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab2.1 (𝑥 = 𝑦 → (𝜓𝜒))
Assertion
Ref Expression
ralrab2 (∀𝑥 ∈ {𝑦𝐴𝜑}𝜓 ↔ ∀𝑦𝐴 (𝜑𝜒))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜒,𝑥   𝜑,𝑥   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑦)

Proof of Theorem ralrab2
StepHypRef Expression
1 df-rab 2495 . . 3 {𝑦𝐴𝜑} = {𝑦 ∣ (𝑦𝐴𝜑)}
21raleqi 2709 . 2 (∀𝑥 ∈ {𝑦𝐴𝜑}𝜓 ↔ ∀𝑥 ∈ {𝑦 ∣ (𝑦𝐴𝜑)}𝜓)
3 ralab2.1 . . 3 (𝑥 = 𝑦 → (𝜓𝜒))
43ralab2 2944 . 2 (∀𝑥 ∈ {𝑦 ∣ (𝑦𝐴𝜑)}𝜓 ↔ ∀𝑦((𝑦𝐴𝜑) → 𝜒))
5 impexp 263 . . . 4 (((𝑦𝐴𝜑) → 𝜒) ↔ (𝑦𝐴 → (𝜑𝜒)))
65albii 1494 . . 3 (∀𝑦((𝑦𝐴𝜑) → 𝜒) ↔ ∀𝑦(𝑦𝐴 → (𝜑𝜒)))
7 df-ral 2491 . . 3 (∀𝑦𝐴 (𝜑𝜒) ↔ ∀𝑦(𝑦𝐴 → (𝜑𝜒)))
86, 7bitr4i 187 . 2 (∀𝑦((𝑦𝐴𝜑) → 𝜒) ↔ ∀𝑦𝐴 (𝜑𝜒))
92, 4, 83bitri 206 1 (∀𝑥 ∈ {𝑦𝐴𝜑}𝜓 ↔ ∀𝑦𝐴 (𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371  wcel 2178  {cab 2193  wral 2486  {crab 2490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rab 2495
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator