| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralrab2 | GIF version | ||
| Description: Universal quantification over a restricted class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| ralab2.1 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ralrab2 | ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜓 ↔ ∀𝑦 ∈ 𝐴 (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 2484 | . . 3 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | 1 | raleqi 2697 | . 2 ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜓 ↔ ∀𝑥 ∈ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}𝜓) |
| 3 | ralab2.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | ralab2 2928 | . 2 ⊢ (∀𝑥 ∈ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}𝜓 ↔ ∀𝑦((𝑦 ∈ 𝐴 ∧ 𝜑) → 𝜒)) |
| 5 | impexp 263 | . . . 4 ⊢ (((𝑦 ∈ 𝐴 ∧ 𝜑) → 𝜒) ↔ (𝑦 ∈ 𝐴 → (𝜑 → 𝜒))) | |
| 6 | 5 | albii 1484 | . . 3 ⊢ (∀𝑦((𝑦 ∈ 𝐴 ∧ 𝜑) → 𝜒) ↔ ∀𝑦(𝑦 ∈ 𝐴 → (𝜑 → 𝜒))) |
| 7 | df-ral 2480 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 (𝜑 → 𝜒) ↔ ∀𝑦(𝑦 ∈ 𝐴 → (𝜑 → 𝜒))) | |
| 8 | 6, 7 | bitr4i 187 | . 2 ⊢ (∀𝑦((𝑦 ∈ 𝐴 ∧ 𝜑) → 𝜒) ↔ ∀𝑦 ∈ 𝐴 (𝜑 → 𝜒)) |
| 9 | 2, 4, 8 | 3bitri 206 | 1 ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜓 ↔ ∀𝑦 ∈ 𝐴 (𝜑 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 ∈ wcel 2167 {cab 2182 ∀wral 2475 {crab 2479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rab 2484 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |