| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexrab2 | GIF version | ||
| Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| ralab2.1 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexrab2 | ⊢ (∃𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜓 ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 2494 | . . 3 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | 1 | rexeqi 2708 | . 2 ⊢ (∃𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜓 ↔ ∃𝑥 ∈ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}𝜓) |
| 3 | ralab2.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | rexab2 2943 | . 2 ⊢ (∃𝑥 ∈ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}𝜓 ↔ ∃𝑦((𝑦 ∈ 𝐴 ∧ 𝜑) ∧ 𝜒)) |
| 5 | anass 401 | . . . 4 ⊢ (((𝑦 ∈ 𝐴 ∧ 𝜑) ∧ 𝜒) ↔ (𝑦 ∈ 𝐴 ∧ (𝜑 ∧ 𝜒))) | |
| 6 | 5 | exbii 1629 | . . 3 ⊢ (∃𝑦((𝑦 ∈ 𝐴 ∧ 𝜑) ∧ 𝜒) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ (𝜑 ∧ 𝜒))) |
| 7 | df-rex 2491 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜒) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ (𝜑 ∧ 𝜒))) | |
| 8 | 6, 7 | bitr4i 187 | . 2 ⊢ (∃𝑦((𝑦 ∈ 𝐴 ∧ 𝜑) ∧ 𝜒) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜒)) |
| 9 | 2, 4, 8 | 3bitri 206 | 1 ⊢ (∃𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜓 ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃wex 1516 ∈ wcel 2177 {cab 2192 ∃wrex 2486 {crab 2489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-rab 2494 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |