ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocsrlemb GIF version

Theorem suplocsrlemb 7747
Description: Lemma for suplocsr 7750. The set 𝐵 is located. (Contributed by Jim Kingdon, 18-Jan-2024.)
Hypotheses
Ref Expression
suplocsrlem.b 𝐵 = {𝑤P ∣ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴}
suplocsrlem.ss (𝜑𝐴R)
suplocsrlem.c (𝜑𝐶𝐴)
suplocsrlem.ub (𝜑 → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)
suplocsrlem.loc (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))
Assertion
Ref Expression
suplocsrlemb (𝜑 → ∀𝑢P𝑣P (𝑢<P 𝑣 → (∃𝑞𝐵 𝑢<P 𝑞 ∨ ∀𝑞𝐵 𝑞<P 𝑣)))
Distinct variable groups:   𝐴,𝑞,𝑤   𝑥,𝐴,𝑦,𝑧   𝑧,𝐵   𝐶,𝑞,𝑤   𝑥,𝐶,𝑦,𝑧   𝜑,𝑞,𝑢,𝑣,𝑧   𝑥,𝑢,𝑦   𝑦,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤)   𝐴(𝑣,𝑢)   𝐵(𝑥,𝑦,𝑤,𝑣,𝑢,𝑞)   𝐶(𝑣,𝑢)

Proof of Theorem suplocsrlemb
StepHypRef Expression
1 simpr 109 . . . . . 6 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → 𝑢<P 𝑣)
2 simplrl 525 . . . . . . 7 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → 𝑢P)
3 simplrr 526 . . . . . . 7 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → 𝑣P)
4 suplocsrlem.ss . . . . . . . . 9 (𝜑𝐴R)
5 suplocsrlem.c . . . . . . . . 9 (𝜑𝐶𝐴)
64, 5sseldd 3143 . . . . . . . 8 (𝜑𝐶R)
76ad2antrr 480 . . . . . . 7 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → 𝐶R)
8 ltpsrprg 7744 . . . . . . 7 ((𝑢P𝑣P𝐶R) → ((𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ 𝑢<P 𝑣))
92, 3, 7, 8syl3anc 1228 . . . . . 6 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → ((𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ 𝑢<P 𝑣))
101, 9mpbird 166 . . . . 5 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))
11 breq2 3986 . . . . . . 7 (𝑦 = (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ((𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑦 ↔ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
12 breq2 3986 . . . . . . . . 9 (𝑦 = (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → (𝑧 <R 𝑦𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
1312ralbidv 2466 . . . . . . . 8 (𝑦 = (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → (∀𝑧𝐴 𝑧 <R 𝑦 ↔ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
1413orbi2d 780 . . . . . . 7 (𝑦 = (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ((∃𝑧𝐴 (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦) ↔ (∃𝑧𝐴 (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))))
1511, 14imbi12d 233 . . . . . 6 (𝑦 = (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → (((𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑦 → (∃𝑧𝐴 (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)) ↔ ((𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → (∃𝑧𝐴 (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))))
16 breq1 3985 . . . . . . . . 9 (𝑥 = (𝐶 +R [⟨𝑢, 1P⟩] ~R ) → (𝑥 <R 𝑦 ↔ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑦))
17 breq1 3985 . . . . . . . . . . 11 (𝑥 = (𝐶 +R [⟨𝑢, 1P⟩] ~R ) → (𝑥 <R 𝑧 ↔ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧))
1817rexbidv 2467 . . . . . . . . . 10 (𝑥 = (𝐶 +R [⟨𝑢, 1P⟩] ~R ) → (∃𝑧𝐴 𝑥 <R 𝑧 ↔ ∃𝑧𝐴 (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧))
1918orbi1d 781 . . . . . . . . 9 (𝑥 = (𝐶 +R [⟨𝑢, 1P⟩] ~R ) → ((∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦) ↔ (∃𝑧𝐴 (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))
2016, 19imbi12d 233 . . . . . . . 8 (𝑥 = (𝐶 +R [⟨𝑢, 1P⟩] ~R ) → ((𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)) ↔ ((𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑦 → (∃𝑧𝐴 (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦))))
2120ralbidv 2466 . . . . . . 7 (𝑥 = (𝐶 +R [⟨𝑢, 1P⟩] ~R ) → (∀𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)) ↔ ∀𝑦R ((𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑦 → (∃𝑧𝐴 (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦))))
22 suplocsrlem.loc . . . . . . . 8 (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))
2322ad2antrr 480 . . . . . . 7 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))
24 1pr 7495 . . . . . . . . . . . 12 1PP
2524a1i 9 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → 1PP)
262, 25opelxpd 4637 . . . . . . . . . 10 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → ⟨𝑢, 1P⟩ ∈ (P × P))
27 enrex 7678 . . . . . . . . . . 11 ~R ∈ V
2827ecelqsi 6555 . . . . . . . . . 10 (⟨𝑢, 1P⟩ ∈ (P × P) → [⟨𝑢, 1P⟩] ~R ∈ ((P × P) / ~R ))
2926, 28syl 14 . . . . . . . . 9 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → [⟨𝑢, 1P⟩] ~R ∈ ((P × P) / ~R ))
30 df-nr 7668 . . . . . . . . 9 R = ((P × P) / ~R )
3129, 30eleqtrrdi 2260 . . . . . . . 8 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → [⟨𝑢, 1P⟩] ~RR)
32 addclsr 7694 . . . . . . . 8 ((𝐶R ∧ [⟨𝑢, 1P⟩] ~RR) → (𝐶 +R [⟨𝑢, 1P⟩] ~R ) ∈ R)
337, 31, 32syl2anc 409 . . . . . . 7 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → (𝐶 +R [⟨𝑢, 1P⟩] ~R ) ∈ R)
3421, 23, 33rspcdva 2835 . . . . . 6 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → ∀𝑦R ((𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑦 → (∃𝑧𝐴 (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))
353, 25opelxpd 4637 . . . . . . . 8 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → ⟨𝑣, 1P⟩ ∈ (P × P))
3627ecelqsi 6555 . . . . . . . . 9 (⟨𝑣, 1P⟩ ∈ (P × P) → [⟨𝑣, 1P⟩] ~R ∈ ((P × P) / ~R ))
3736, 30eleqtrrdi 2260 . . . . . . . 8 (⟨𝑣, 1P⟩ ∈ (P × P) → [⟨𝑣, 1P⟩] ~RR)
3835, 37syl 14 . . . . . . 7 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → [⟨𝑣, 1P⟩] ~RR)
39 addclsr 7694 . . . . . . 7 ((𝐶R ∧ [⟨𝑣, 1P⟩] ~RR) → (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ∈ R)
407, 38, 39syl2anc 409 . . . . . 6 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ∈ R)
4115, 34, 40rspcdva 2835 . . . . 5 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → ((𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → (∃𝑧𝐴 (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))))
4210, 41mpd 13 . . . 4 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → (∃𝑧𝐴 (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
432ad2antrr 480 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) → 𝑢P)
447ad2antrr 480 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) → 𝐶R)
45 mappsrprg 7745 . . . . . . . . . . 11 ((𝑢P𝐶R) → (𝐶 +R -1R) <R (𝐶 +R [⟨𝑢, 1P⟩] ~R ))
4643, 44, 45syl2anc 409 . . . . . . . . . 10 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) → (𝐶 +R -1R) <R (𝐶 +R [⟨𝑢, 1P⟩] ~R ))
47 simpr 109 . . . . . . . . . 10 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) → (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧)
48 ltsosr 7705 . . . . . . . . . . 11 <R Or R
49 ltrelsr 7679 . . . . . . . . . . 11 <R ⊆ (R × R)
5048, 49sotri 4999 . . . . . . . . . 10 (((𝐶 +R -1R) <R (𝐶 +R [⟨𝑢, 1P⟩] ~R ) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) → (𝐶 +R -1R) <R 𝑧)
5146, 47, 50syl2anc 409 . . . . . . . . 9 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) → (𝐶 +R -1R) <R 𝑧)
52 map2psrprg 7746 . . . . . . . . . 10 (𝐶R → ((𝐶 +R -1R) <R 𝑧 ↔ ∃𝑞P (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧))
5344, 52syl 14 . . . . . . . . 9 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) → ((𝐶 +R -1R) <R 𝑧 ↔ ∃𝑞P (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧))
5451, 53mpbid 146 . . . . . . . 8 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) → ∃𝑞P (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧)
55 simpr 109 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) ∧ 𝑞P) ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧) → (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧)
56 simp-4r 532 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) ∧ 𝑞P) ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧) → 𝑧𝐴)
5755, 56eqeltrd 2243 . . . . . . . . . . 11 (((((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) ∧ 𝑞P) ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧) → (𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴)
58 simpllr 524 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) ∧ 𝑞P) ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧) → (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧)
5958, 55breqtrrd 4010 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) ∧ 𝑞P) ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧) → (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑞, 1P⟩] ~R ))
602ad4antr 486 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) ∧ 𝑞P) ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧) → 𝑢P)
61 simplr 520 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) ∧ 𝑞P) ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧) → 𝑞P)
6244ad2antrr 480 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) ∧ 𝑞P) ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧) → 𝐶R)
63 ltpsrprg 7744 . . . . . . . . . . . . 13 ((𝑢P𝑞P𝐶R) → ((𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑞, 1P⟩] ~R ) ↔ 𝑢<P 𝑞))
6460, 61, 62, 63syl3anc 1228 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) ∧ 𝑞P) ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧) → ((𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑞, 1P⟩] ~R ) ↔ 𝑢<P 𝑞))
6559, 64mpbid 146 . . . . . . . . . . 11 (((((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) ∧ 𝑞P) ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧) → 𝑢<P 𝑞)
6657, 65jca 304 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) ∧ 𝑞P) ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧) → ((𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴𝑢<P 𝑞))
6766ex 114 . . . . . . . . 9 ((((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) ∧ 𝑞P) → ((𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧 → ((𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴𝑢<P 𝑞)))
6867reximdva 2568 . . . . . . . 8 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) → (∃𝑞P (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧 → ∃𝑞P ((𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴𝑢<P 𝑞)))
6954, 68mpd 13 . . . . . . 7 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) → ∃𝑞P ((𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴𝑢<P 𝑞))
70 opeq1 3758 . . . . . . . . . . . . . 14 (𝑤 = 𝑞 → ⟨𝑤, 1P⟩ = ⟨𝑞, 1P⟩)
7170eceq1d 6537 . . . . . . . . . . . . 13 (𝑤 = 𝑞 → [⟨𝑤, 1P⟩] ~R = [⟨𝑞, 1P⟩] ~R )
7271oveq2d 5858 . . . . . . . . . . . 12 (𝑤 = 𝑞 → (𝐶 +R [⟨𝑤, 1P⟩] ~R ) = (𝐶 +R [⟨𝑞, 1P⟩] ~R ))
7372eleq1d 2235 . . . . . . . . . . 11 (𝑤 = 𝑞 → ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴 ↔ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴))
74 suplocsrlem.b . . . . . . . . . . 11 𝐵 = {𝑤P ∣ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴}
7573, 74elrab2 2885 . . . . . . . . . 10 (𝑞𝐵 ↔ (𝑞P ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴))
7675anbi1i 454 . . . . . . . . 9 ((𝑞𝐵𝑢<P 𝑞) ↔ ((𝑞P ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴) ∧ 𝑢<P 𝑞))
77 anass 399 . . . . . . . . 9 (((𝑞P ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴) ∧ 𝑢<P 𝑞) ↔ (𝑞P ∧ ((𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴𝑢<P 𝑞)))
7876, 77bitri 183 . . . . . . . 8 ((𝑞𝐵𝑢<P 𝑞) ↔ (𝑞P ∧ ((𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴𝑢<P 𝑞)))
7978rexbii2 2477 . . . . . . 7 (∃𝑞𝐵 𝑢<P 𝑞 ↔ ∃𝑞P ((𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴𝑢<P 𝑞))
8069, 79sylibr 133 . . . . . 6 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) → ∃𝑞𝐵 𝑢<P 𝑞)
8180rexlimdva2 2586 . . . . 5 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → (∃𝑧𝐴 (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧 → ∃𝑞𝐵 𝑢<P 𝑞))
82 breq1 3985 . . . . . . . . 9 (𝑧 = (𝐶 +R [⟨𝑞, 1P⟩] ~R ) → (𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
83 simplr 520 . . . . . . . . 9 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )) ∧ 𝑞𝐵) → ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))
84 simpr 109 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )) ∧ 𝑞𝐵) → 𝑞𝐵)
8584, 75sylib 121 . . . . . . . . . 10 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )) ∧ 𝑞𝐵) → (𝑞P ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴))
8685simprd 113 . . . . . . . . 9 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )) ∧ 𝑞𝐵) → (𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴)
8782, 83, 86rspcdva 2835 . . . . . . . 8 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )) ∧ 𝑞𝐵) → (𝐶 +R [⟨𝑞, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))
8885simpld 111 . . . . . . . . 9 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )) ∧ 𝑞𝐵) → 𝑞P)
893ad2antrr 480 . . . . . . . . 9 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )) ∧ 𝑞𝐵) → 𝑣P)
907ad2antrr 480 . . . . . . . . 9 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )) ∧ 𝑞𝐵) → 𝐶R)
91 ltpsrprg 7744 . . . . . . . . 9 ((𝑞P𝑣P𝐶R) → ((𝐶 +R [⟨𝑞, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ 𝑞<P 𝑣))
9288, 89, 90, 91syl3anc 1228 . . . . . . . 8 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )) ∧ 𝑞𝐵) → ((𝐶 +R [⟨𝑞, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ 𝑞<P 𝑣))
9387, 92mpbid 146 . . . . . . 7 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )) ∧ 𝑞𝐵) → 𝑞<P 𝑣)
9493ralrimiva 2539 . . . . . 6 ((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )) → ∀𝑞𝐵 𝑞<P 𝑣)
9594ex 114 . . . . 5 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → (∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ∀𝑞𝐵 𝑞<P 𝑣))
9681, 95orim12d 776 . . . 4 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → ((∃𝑧𝐴 (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )) → (∃𝑞𝐵 𝑢<P 𝑞 ∨ ∀𝑞𝐵 𝑞<P 𝑣)))
9742, 96mpd 13 . . 3 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → (∃𝑞𝐵 𝑢<P 𝑞 ∨ ∀𝑞𝐵 𝑞<P 𝑣))
9897ex 114 . 2 ((𝜑 ∧ (𝑢P𝑣P)) → (𝑢<P 𝑣 → (∃𝑞𝐵 𝑢<P 𝑞 ∨ ∀𝑞𝐵 𝑞<P 𝑣)))
9998ralrimivva 2548 1 (𝜑 → ∀𝑢P𝑣P (𝑢<P 𝑣 → (∃𝑞𝐵 𝑢<P 𝑞 ∨ ∀𝑞𝐵 𝑞<P 𝑣)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698   = wceq 1343  wcel 2136  wral 2444  wrex 2445  {crab 2448  wss 3116  cop 3579   class class class wbr 3982   × cxp 4602  (class class class)co 5842  [cec 6499   / cqs 6500  Pcnp 7232  1Pc1p 7233  <P cltp 7236   ~R cer 7237  Rcnr 7238  -1Rcm1r 7241   +R cplr 7242   <R cltr 7244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-i1p 7408  df-iplp 7409  df-imp 7410  df-iltp 7411  df-enr 7667  df-nr 7668  df-plr 7669  df-mr 7670  df-ltr 7671  df-0r 7672  df-1r 7673  df-m1r 7674
This theorem is referenced by:  suplocsrlempr  7748
  Copyright terms: Public domain W3C validator