ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocsrlemb GIF version

Theorem suplocsrlemb 7768
Description: Lemma for suplocsr 7771. The set 𝐵 is located. (Contributed by Jim Kingdon, 18-Jan-2024.)
Hypotheses
Ref Expression
suplocsrlem.b 𝐵 = {𝑤P ∣ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴}
suplocsrlem.ss (𝜑𝐴R)
suplocsrlem.c (𝜑𝐶𝐴)
suplocsrlem.ub (𝜑 → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)
suplocsrlem.loc (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))
Assertion
Ref Expression
suplocsrlemb (𝜑 → ∀𝑢P𝑣P (𝑢<P 𝑣 → (∃𝑞𝐵 𝑢<P 𝑞 ∨ ∀𝑞𝐵 𝑞<P 𝑣)))
Distinct variable groups:   𝐴,𝑞,𝑤   𝑥,𝐴,𝑦,𝑧   𝑧,𝐵   𝐶,𝑞,𝑤   𝑥,𝐶,𝑦,𝑧   𝜑,𝑞,𝑢,𝑣,𝑧   𝑥,𝑢,𝑦   𝑦,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤)   𝐴(𝑣,𝑢)   𝐵(𝑥,𝑦,𝑤,𝑣,𝑢,𝑞)   𝐶(𝑣,𝑢)

Proof of Theorem suplocsrlemb
StepHypRef Expression
1 simpr 109 . . . . . 6 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → 𝑢<P 𝑣)
2 simplrl 530 . . . . . . 7 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → 𝑢P)
3 simplrr 531 . . . . . . 7 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → 𝑣P)
4 suplocsrlem.ss . . . . . . . . 9 (𝜑𝐴R)
5 suplocsrlem.c . . . . . . . . 9 (𝜑𝐶𝐴)
64, 5sseldd 3148 . . . . . . . 8 (𝜑𝐶R)
76ad2antrr 485 . . . . . . 7 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → 𝐶R)
8 ltpsrprg 7765 . . . . . . 7 ((𝑢P𝑣P𝐶R) → ((𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ 𝑢<P 𝑣))
92, 3, 7, 8syl3anc 1233 . . . . . 6 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → ((𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ 𝑢<P 𝑣))
101, 9mpbird 166 . . . . 5 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))
11 breq2 3993 . . . . . . 7 (𝑦 = (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ((𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑦 ↔ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
12 breq2 3993 . . . . . . . . 9 (𝑦 = (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → (𝑧 <R 𝑦𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
1312ralbidv 2470 . . . . . . . 8 (𝑦 = (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → (∀𝑧𝐴 𝑧 <R 𝑦 ↔ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
1413orbi2d 785 . . . . . . 7 (𝑦 = (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ((∃𝑧𝐴 (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦) ↔ (∃𝑧𝐴 (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))))
1511, 14imbi12d 233 . . . . . 6 (𝑦 = (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → (((𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑦 → (∃𝑧𝐴 (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)) ↔ ((𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → (∃𝑧𝐴 (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))))
16 breq1 3992 . . . . . . . . 9 (𝑥 = (𝐶 +R [⟨𝑢, 1P⟩] ~R ) → (𝑥 <R 𝑦 ↔ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑦))
17 breq1 3992 . . . . . . . . . . 11 (𝑥 = (𝐶 +R [⟨𝑢, 1P⟩] ~R ) → (𝑥 <R 𝑧 ↔ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧))
1817rexbidv 2471 . . . . . . . . . 10 (𝑥 = (𝐶 +R [⟨𝑢, 1P⟩] ~R ) → (∃𝑧𝐴 𝑥 <R 𝑧 ↔ ∃𝑧𝐴 (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧))
1918orbi1d 786 . . . . . . . . 9 (𝑥 = (𝐶 +R [⟨𝑢, 1P⟩] ~R ) → ((∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦) ↔ (∃𝑧𝐴 (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))
2016, 19imbi12d 233 . . . . . . . 8 (𝑥 = (𝐶 +R [⟨𝑢, 1P⟩] ~R ) → ((𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)) ↔ ((𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑦 → (∃𝑧𝐴 (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦))))
2120ralbidv 2470 . . . . . . 7 (𝑥 = (𝐶 +R [⟨𝑢, 1P⟩] ~R ) → (∀𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)) ↔ ∀𝑦R ((𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑦 → (∃𝑧𝐴 (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦))))
22 suplocsrlem.loc . . . . . . . 8 (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))
2322ad2antrr 485 . . . . . . 7 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))
24 1pr 7516 . . . . . . . . . . . 12 1PP
2524a1i 9 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → 1PP)
262, 25opelxpd 4644 . . . . . . . . . 10 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → ⟨𝑢, 1P⟩ ∈ (P × P))
27 enrex 7699 . . . . . . . . . . 11 ~R ∈ V
2827ecelqsi 6567 . . . . . . . . . 10 (⟨𝑢, 1P⟩ ∈ (P × P) → [⟨𝑢, 1P⟩] ~R ∈ ((P × P) / ~R ))
2926, 28syl 14 . . . . . . . . 9 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → [⟨𝑢, 1P⟩] ~R ∈ ((P × P) / ~R ))
30 df-nr 7689 . . . . . . . . 9 R = ((P × P) / ~R )
3129, 30eleqtrrdi 2264 . . . . . . . 8 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → [⟨𝑢, 1P⟩] ~RR)
32 addclsr 7715 . . . . . . . 8 ((𝐶R ∧ [⟨𝑢, 1P⟩] ~RR) → (𝐶 +R [⟨𝑢, 1P⟩] ~R ) ∈ R)
337, 31, 32syl2anc 409 . . . . . . 7 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → (𝐶 +R [⟨𝑢, 1P⟩] ~R ) ∈ R)
3421, 23, 33rspcdva 2839 . . . . . 6 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → ∀𝑦R ((𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑦 → (∃𝑧𝐴 (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))
353, 25opelxpd 4644 . . . . . . . 8 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → ⟨𝑣, 1P⟩ ∈ (P × P))
3627ecelqsi 6567 . . . . . . . . 9 (⟨𝑣, 1P⟩ ∈ (P × P) → [⟨𝑣, 1P⟩] ~R ∈ ((P × P) / ~R ))
3736, 30eleqtrrdi 2264 . . . . . . . 8 (⟨𝑣, 1P⟩ ∈ (P × P) → [⟨𝑣, 1P⟩] ~RR)
3835, 37syl 14 . . . . . . 7 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → [⟨𝑣, 1P⟩] ~RR)
39 addclsr 7715 . . . . . . 7 ((𝐶R ∧ [⟨𝑣, 1P⟩] ~RR) → (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ∈ R)
407, 38, 39syl2anc 409 . . . . . 6 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ∈ R)
4115, 34, 40rspcdva 2839 . . . . 5 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → ((𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → (∃𝑧𝐴 (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))))
4210, 41mpd 13 . . . 4 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → (∃𝑧𝐴 (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
432ad2antrr 485 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) → 𝑢P)
447ad2antrr 485 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) → 𝐶R)
45 mappsrprg 7766 . . . . . . . . . . 11 ((𝑢P𝐶R) → (𝐶 +R -1R) <R (𝐶 +R [⟨𝑢, 1P⟩] ~R ))
4643, 44, 45syl2anc 409 . . . . . . . . . 10 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) → (𝐶 +R -1R) <R (𝐶 +R [⟨𝑢, 1P⟩] ~R ))
47 simpr 109 . . . . . . . . . 10 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) → (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧)
48 ltsosr 7726 . . . . . . . . . . 11 <R Or R
49 ltrelsr 7700 . . . . . . . . . . 11 <R ⊆ (R × R)
5048, 49sotri 5006 . . . . . . . . . 10 (((𝐶 +R -1R) <R (𝐶 +R [⟨𝑢, 1P⟩] ~R ) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) → (𝐶 +R -1R) <R 𝑧)
5146, 47, 50syl2anc 409 . . . . . . . . 9 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) → (𝐶 +R -1R) <R 𝑧)
52 map2psrprg 7767 . . . . . . . . . 10 (𝐶R → ((𝐶 +R -1R) <R 𝑧 ↔ ∃𝑞P (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧))
5344, 52syl 14 . . . . . . . . 9 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) → ((𝐶 +R -1R) <R 𝑧 ↔ ∃𝑞P (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧))
5451, 53mpbid 146 . . . . . . . 8 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) → ∃𝑞P (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧)
55 simpr 109 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) ∧ 𝑞P) ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧) → (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧)
56 simp-4r 537 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) ∧ 𝑞P) ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧) → 𝑧𝐴)
5755, 56eqeltrd 2247 . . . . . . . . . . 11 (((((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) ∧ 𝑞P) ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧) → (𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴)
58 simpllr 529 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) ∧ 𝑞P) ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧) → (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧)
5958, 55breqtrrd 4017 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) ∧ 𝑞P) ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧) → (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑞, 1P⟩] ~R ))
602ad4antr 491 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) ∧ 𝑞P) ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧) → 𝑢P)
61 simplr 525 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) ∧ 𝑞P) ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧) → 𝑞P)
6244ad2antrr 485 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) ∧ 𝑞P) ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧) → 𝐶R)
63 ltpsrprg 7765 . . . . . . . . . . . . 13 ((𝑢P𝑞P𝐶R) → ((𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑞, 1P⟩] ~R ) ↔ 𝑢<P 𝑞))
6460, 61, 62, 63syl3anc 1233 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) ∧ 𝑞P) ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧) → ((𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑞, 1P⟩] ~R ) ↔ 𝑢<P 𝑞))
6559, 64mpbid 146 . . . . . . . . . . 11 (((((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) ∧ 𝑞P) ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧) → 𝑢<P 𝑞)
6657, 65jca 304 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) ∧ 𝑞P) ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧) → ((𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴𝑢<P 𝑞))
6766ex 114 . . . . . . . . 9 ((((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) ∧ 𝑞P) → ((𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧 → ((𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴𝑢<P 𝑞)))
6867reximdva 2572 . . . . . . . 8 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) → (∃𝑞P (𝐶 +R [⟨𝑞, 1P⟩] ~R ) = 𝑧 → ∃𝑞P ((𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴𝑢<P 𝑞)))
6954, 68mpd 13 . . . . . . 7 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) → ∃𝑞P ((𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴𝑢<P 𝑞))
70 opeq1 3765 . . . . . . . . . . . . . 14 (𝑤 = 𝑞 → ⟨𝑤, 1P⟩ = ⟨𝑞, 1P⟩)
7170eceq1d 6549 . . . . . . . . . . . . 13 (𝑤 = 𝑞 → [⟨𝑤, 1P⟩] ~R = [⟨𝑞, 1P⟩] ~R )
7271oveq2d 5869 . . . . . . . . . . . 12 (𝑤 = 𝑞 → (𝐶 +R [⟨𝑤, 1P⟩] ~R ) = (𝐶 +R [⟨𝑞, 1P⟩] ~R ))
7372eleq1d 2239 . . . . . . . . . . 11 (𝑤 = 𝑞 → ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴 ↔ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴))
74 suplocsrlem.b . . . . . . . . . . 11 𝐵 = {𝑤P ∣ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴}
7573, 74elrab2 2889 . . . . . . . . . 10 (𝑞𝐵 ↔ (𝑞P ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴))
7675anbi1i 455 . . . . . . . . 9 ((𝑞𝐵𝑢<P 𝑞) ↔ ((𝑞P ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴) ∧ 𝑢<P 𝑞))
77 anass 399 . . . . . . . . 9 (((𝑞P ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴) ∧ 𝑢<P 𝑞) ↔ (𝑞P ∧ ((𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴𝑢<P 𝑞)))
7876, 77bitri 183 . . . . . . . 8 ((𝑞𝐵𝑢<P 𝑞) ↔ (𝑞P ∧ ((𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴𝑢<P 𝑞)))
7978rexbii2 2481 . . . . . . 7 (∃𝑞𝐵 𝑢<P 𝑞 ↔ ∃𝑞P ((𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴𝑢<P 𝑞))
8069, 79sylibr 133 . . . . . 6 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ 𝑧𝐴) ∧ (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧) → ∃𝑞𝐵 𝑢<P 𝑞)
8180rexlimdva2 2590 . . . . 5 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → (∃𝑧𝐴 (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧 → ∃𝑞𝐵 𝑢<P 𝑞))
82 breq1 3992 . . . . . . . . 9 (𝑧 = (𝐶 +R [⟨𝑞, 1P⟩] ~R ) → (𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
83 simplr 525 . . . . . . . . 9 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )) ∧ 𝑞𝐵) → ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))
84 simpr 109 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )) ∧ 𝑞𝐵) → 𝑞𝐵)
8584, 75sylib 121 . . . . . . . . . 10 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )) ∧ 𝑞𝐵) → (𝑞P ∧ (𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴))
8685simprd 113 . . . . . . . . 9 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )) ∧ 𝑞𝐵) → (𝐶 +R [⟨𝑞, 1P⟩] ~R ) ∈ 𝐴)
8782, 83, 86rspcdva 2839 . . . . . . . 8 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )) ∧ 𝑞𝐵) → (𝐶 +R [⟨𝑞, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))
8885simpld 111 . . . . . . . . 9 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )) ∧ 𝑞𝐵) → 𝑞P)
893ad2antrr 485 . . . . . . . . 9 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )) ∧ 𝑞𝐵) → 𝑣P)
907ad2antrr 485 . . . . . . . . 9 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )) ∧ 𝑞𝐵) → 𝐶R)
91 ltpsrprg 7765 . . . . . . . . 9 ((𝑞P𝑣P𝐶R) → ((𝐶 +R [⟨𝑞, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ 𝑞<P 𝑣))
9288, 89, 90, 91syl3anc 1233 . . . . . . . 8 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )) ∧ 𝑞𝐵) → ((𝐶 +R [⟨𝑞, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ 𝑞<P 𝑣))
9387, 92mpbid 146 . . . . . . 7 (((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )) ∧ 𝑞𝐵) → 𝑞<P 𝑣)
9493ralrimiva 2543 . . . . . 6 ((((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) ∧ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )) → ∀𝑞𝐵 𝑞<P 𝑣)
9594ex 114 . . . . 5 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → (∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) → ∀𝑞𝐵 𝑞<P 𝑣))
9681, 95orim12d 781 . . . 4 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → ((∃𝑧𝐴 (𝐶 +R [⟨𝑢, 1P⟩] ~R ) <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )) → (∃𝑞𝐵 𝑢<P 𝑞 ∨ ∀𝑞𝐵 𝑞<P 𝑣)))
9742, 96mpd 13 . . 3 (((𝜑 ∧ (𝑢P𝑣P)) ∧ 𝑢<P 𝑣) → (∃𝑞𝐵 𝑢<P 𝑞 ∨ ∀𝑞𝐵 𝑞<P 𝑣))
9897ex 114 . 2 ((𝜑 ∧ (𝑢P𝑣P)) → (𝑢<P 𝑣 → (∃𝑞𝐵 𝑢<P 𝑞 ∨ ∀𝑞𝐵 𝑞<P 𝑣)))
9998ralrimivva 2552 1 (𝜑 → ∀𝑢P𝑣P (𝑢<P 𝑣 → (∃𝑞𝐵 𝑢<P 𝑞 ∨ ∀𝑞𝐵 𝑞<P 𝑣)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703   = wceq 1348  wcel 2141  wral 2448  wrex 2449  {crab 2452  wss 3121  cop 3586   class class class wbr 3989   × cxp 4609  (class class class)co 5853  [cec 6511   / cqs 6512  Pcnp 7253  1Pc1p 7254  <P cltp 7257   ~R cer 7258  Rcnr 7259  -1Rcm1r 7262   +R cplr 7263   <R cltr 7265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-i1p 7429  df-iplp 7430  df-imp 7431  df-iltp 7432  df-enr 7688  df-nr 7689  df-plr 7690  df-mr 7691  df-ltr 7692  df-0r 7693  df-1r 7694  df-m1r 7695
This theorem is referenced by:  suplocsrlempr  7769
  Copyright terms: Public domain W3C validator