ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexuz3 GIF version

Theorem rexuz3 11487
Description: Restrict the base of the upper integers set to another upper integers set. (Contributed by Mario Carneiro, 26-Dec-2013.)
Hypothesis
Ref Expression
rexuz3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
rexuz3 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗   𝑗,𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝑀(𝑘)

Proof of Theorem rexuz3
StepHypRef Expression
1 id 19 . . . . 5 (𝑘𝑍𝑘𝑍)
21rgen 2583 . . . 4 𝑘𝑍 𝑘𝑍
3 fveq2 5623 . . . . . . 7 (𝑗 = 𝑀 → (ℤ𝑗) = (ℤ𝑀))
4 rexuz3.1 . . . . . . 7 𝑍 = (ℤ𝑀)
53, 4eqtr4di 2280 . . . . . 6 (𝑗 = 𝑀 → (ℤ𝑗) = 𝑍)
65raleqdv 2734 . . . . 5 (𝑗 = 𝑀 → (∀𝑘 ∈ (ℤ𝑗)𝑘𝑍 ↔ ∀𝑘𝑍 𝑘𝑍))
76rspcev 2907 . . . 4 ((𝑀 ∈ ℤ ∧ ∀𝑘𝑍 𝑘𝑍) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝑘𝑍)
82, 7mpan2 425 . . 3 (𝑀 ∈ ℤ → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝑘𝑍)
98biantrurd 305 . 2 (𝑀 ∈ ℤ → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝑘𝑍 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)))
104uztrn2 9728 . . . . . . . . . 10 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
1110a1d 22 . . . . . . . . 9 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (𝜑𝑘𝑍))
1211ancrd 326 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (𝜑 → (𝑘𝑍𝜑)))
1312ralimdva 2597 . . . . . . 7 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)𝜑 → ∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑)))
14 eluzelz 9719 . . . . . . . 8 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
1514, 4eleq2s 2324 . . . . . . 7 (𝑗𝑍𝑗 ∈ ℤ)
1613, 15jctild 316 . . . . . 6 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)𝜑 → (𝑗 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑))))
1716imp 124 . . . . 5 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → (𝑗 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑)))
18 uzid 9724 . . . . . . 7 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
19 simpl 109 . . . . . . . 8 ((𝑘𝑍𝜑) → 𝑘𝑍)
2019ralimi 2593 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑) → ∀𝑘 ∈ (ℤ𝑗)𝑘𝑍)
21 eleq1 2292 . . . . . . . 8 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
2221rspcva 2905 . . . . . . 7 ((𝑗 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)𝑘𝑍) → 𝑗𝑍)
2318, 20, 22syl2an 289 . . . . . 6 ((𝑗 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑)) → 𝑗𝑍)
24 simpr 110 . . . . . . . 8 ((𝑘𝑍𝜑) → 𝜑)
2524ralimi 2593 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑) → ∀𝑘 ∈ (ℤ𝑗)𝜑)
2625adantl 277 . . . . . 6 ((𝑗 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑)) → ∀𝑘 ∈ (ℤ𝑗)𝜑)
2723, 26jca 306 . . . . 5 ((𝑗 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑)) → (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑))
2817, 27impbii 126 . . . 4 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) ↔ (𝑗 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑)))
2928rexbii2 2541 . . 3 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑))
30 rexanuz 11485 . . 3 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝑘𝑍 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
3129, 30bitr2i 185 . 2 ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝑘𝑍 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑)
329, 31bitr2di 197 1 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  wrex 2509  cfv 5314  cz 9434  cuz 9710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-n0 9358  df-z 9435  df-uz 9711
This theorem is referenced by:  rexanuz2  11488  cau4  11613  clim2  11780  lmbr2  14873  lmff  14908
  Copyright terms: Public domain W3C validator