Proof of Theorem rexuz3
Step | Hyp | Ref
| Expression |
1 | | id 19 |
. . . . 5
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ 𝑍) |
2 | 1 | rgen 2519 |
. . . 4
⊢
∀𝑘 ∈
𝑍 𝑘 ∈ 𝑍 |
3 | | fveq2 5486 |
. . . . . . 7
⊢ (𝑗 = 𝑀 → (ℤ≥‘𝑗) =
(ℤ≥‘𝑀)) |
4 | | rexuz3.1 |
. . . . . . 7
⊢ 𝑍 =
(ℤ≥‘𝑀) |
5 | 3, 4 | eqtr4di 2217 |
. . . . . 6
⊢ (𝑗 = 𝑀 → (ℤ≥‘𝑗) = 𝑍) |
6 | 5 | raleqdv 2667 |
. . . . 5
⊢ (𝑗 = 𝑀 → (∀𝑘 ∈ (ℤ≥‘𝑗)𝑘 ∈ 𝑍 ↔ ∀𝑘 ∈ 𝑍 𝑘 ∈ 𝑍)) |
7 | 6 | rspcev 2830 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧
∀𝑘 ∈ 𝑍 𝑘 ∈ 𝑍) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑘 ∈ 𝑍) |
8 | 2, 7 | mpan2 422 |
. . 3
⊢ (𝑀 ∈ ℤ →
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)𝑘 ∈ 𝑍) |
9 | 8 | biantrurd 303 |
. 2
⊢ (𝑀 ∈ ℤ →
(∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)𝜑 ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑘 ∈ 𝑍 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑))) |
10 | 4 | uztrn2 9483 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
11 | 10 | a1d 22 |
. . . . . . . . 9
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝜑 → 𝑘 ∈ 𝑍)) |
12 | 11 | ancrd 324 |
. . . . . . . 8
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝜑 → (𝑘 ∈ 𝑍 ∧ 𝜑))) |
13 | 12 | ralimdva 2533 |
. . . . . . 7
⊢ (𝑗 ∈ 𝑍 → (∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ 𝑍 ∧ 𝜑))) |
14 | | eluzelz 9475 |
. . . . . . . 8
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ ℤ) |
15 | 14, 4 | eleq2s 2261 |
. . . . . . 7
⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ) |
16 | 13, 15 | jctild 314 |
. . . . . 6
⊢ (𝑗 ∈ 𝑍 → (∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 → (𝑗 ∈ ℤ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ 𝑍 ∧ 𝜑)))) |
17 | 16 | imp 123 |
. . . . 5
⊢ ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) → (𝑗 ∈ ℤ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ 𝑍 ∧ 𝜑))) |
18 | | uzid 9480 |
. . . . . . 7
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
(ℤ≥‘𝑗)) |
19 | | simpl 108 |
. . . . . . . 8
⊢ ((𝑘 ∈ 𝑍 ∧ 𝜑) → 𝑘 ∈ 𝑍) |
20 | 19 | ralimi 2529 |
. . . . . . 7
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ 𝑍 ∧ 𝜑) → ∀𝑘 ∈ (ℤ≥‘𝑗)𝑘 ∈ 𝑍) |
21 | | eleq1 2229 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) |
22 | 21 | rspcva 2828 |
. . . . . . 7
⊢ ((𝑗 ∈
(ℤ≥‘𝑗) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑘 ∈ 𝑍) → 𝑗 ∈ 𝑍) |
23 | 18, 20, 22 | syl2an 287 |
. . . . . 6
⊢ ((𝑗 ∈ ℤ ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ 𝑍 ∧ 𝜑)) → 𝑗 ∈ 𝑍) |
24 | | simpr 109 |
. . . . . . . 8
⊢ ((𝑘 ∈ 𝑍 ∧ 𝜑) → 𝜑) |
25 | 24 | ralimi 2529 |
. . . . . . 7
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ 𝑍 ∧ 𝜑) → ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) |
26 | 25 | adantl 275 |
. . . . . 6
⊢ ((𝑗 ∈ ℤ ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ 𝑍 ∧ 𝜑)) → ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) |
27 | 23, 26 | jca 304 |
. . . . 5
⊢ ((𝑗 ∈ ℤ ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ 𝑍 ∧ 𝜑)) → (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
28 | 17, 27 | impbii 125 |
. . . 4
⊢ ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) ↔ (𝑗 ∈ ℤ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ 𝑍 ∧ 𝜑))) |
29 | 28 | rexbii2 2477 |
. . 3
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ 𝑍 ∧ 𝜑)) |
30 | | rexanuz 10930 |
. . 3
⊢
(∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ 𝑍 ∧ 𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑘 ∈ 𝑍 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
31 | 29, 30 | bitr2i 184 |
. 2
⊢
((∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)𝑘 ∈ 𝑍 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) |
32 | 9, 31 | bitr2di 196 |
1
⊢ (𝑀 ∈ ℤ →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |