![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexrp | GIF version |
Description: Quantification over positive reals. (Contributed by Mario Carneiro, 21-May-2014.) |
Ref | Expression |
---|---|
rexrp | ⊢ (∃𝑥 ∈ ℝ+ 𝜑 ↔ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrp 9293 | . . . 4 ⊢ (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) | |
2 | 1 | anbi1i 449 | . . 3 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝜑) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝜑)) |
3 | anass 396 | . . 3 ⊢ (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝜑) ↔ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ 𝜑))) | |
4 | 2, 3 | bitri 183 | . 2 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝜑) ↔ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ 𝜑))) |
5 | 4 | rexbii2 2405 | 1 ⊢ (∃𝑥 ∈ ℝ+ 𝜑 ↔ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∈ wcel 1448 ∃wrex 2376 class class class wbr 3875 ℝcr 7499 0cc0 7500 < clt 7672 ℝ+crp 9291 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-rex 2381 df-rab 2384 df-v 2643 df-un 3025 df-sn 3480 df-pr 3481 df-op 3483 df-br 3876 df-rp 9292 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |