ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexuz2 GIF version

Theorem rexuz2 9672
Description: Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
Assertion
Ref Expression
rexuz2 (∃𝑛 ∈ (ℤ𝑀)𝜑 ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀𝑛𝜑)))
Distinct variable group:   𝑛,𝑀
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem rexuz2
StepHypRef Expression
1 eluz2 9624 . . . . . 6 (𝑛 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀𝑛))
2 df-3an 982 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀𝑛) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀𝑛))
31, 2bitri 184 . . . . 5 (𝑛 ∈ (ℤ𝑀) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀𝑛))
43anbi1i 458 . . . 4 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) ↔ (((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀𝑛) ∧ 𝜑))
5 anass 401 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀𝑛) ∧ 𝜑) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑀𝑛𝜑)))
6 anass 401 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑀𝑛𝜑)) ↔ (𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ (𝑀𝑛𝜑))))
7 an12 561 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ (𝑀𝑛𝜑))) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝑀𝑛𝜑))))
86, 7bitri 184 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑀𝑛𝜑)) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝑀𝑛𝜑))))
95, 8bitri 184 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀𝑛) ∧ 𝜑) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝑀𝑛𝜑))))
104, 9bitri 184 . . 3 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝑀𝑛𝜑))))
1110rexbii2 2508 . 2 (∃𝑛 ∈ (ℤ𝑀)𝜑 ↔ ∃𝑛 ∈ ℤ (𝑀 ∈ ℤ ∧ (𝑀𝑛𝜑)))
12 r19.42v 2654 . 2 (∃𝑛 ∈ ℤ (𝑀 ∈ ℤ ∧ (𝑀𝑛𝜑)) ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀𝑛𝜑)))
1311, 12bitri 184 1 (∃𝑛 ∈ (ℤ𝑀)𝜑 ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀𝑛𝜑)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 980  wcel 2167  wrex 2476   class class class wbr 4034  cfv 5259  cle 8079  cz 9343  cuz 9618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-cnex 7987  ax-resscn 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5928  df-neg 8217  df-z 9344  df-uz 9619
This theorem is referenced by:  2rexuz  9673
  Copyright terms: Public domain W3C validator