![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexuz2 | GIF version |
Description: Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
Ref | Expression |
---|---|
rexuz2 | ⊢ (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 9532 | . . . . . 6 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) | |
2 | df-3an 980 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀 ≤ 𝑛)) | |
3 | 1, 2 | bitri 184 | . . . . 5 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀 ≤ 𝑛)) |
4 | 3 | anbi1i 458 | . . . 4 ⊢ ((𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝜑) ↔ (((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀 ≤ 𝑛) ∧ 𝜑)) |
5 | anass 401 | . . . . 5 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀 ≤ 𝑛) ∧ 𝜑) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑀 ≤ 𝑛 ∧ 𝜑))) | |
6 | anass 401 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)) ↔ (𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)))) | |
7 | an12 561 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑))) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)))) | |
8 | 6, 7 | bitri 184 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)))) |
9 | 5, 8 | bitri 184 | . . . 4 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀 ≤ 𝑛) ∧ 𝜑) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)))) |
10 | 4, 9 | bitri 184 | . . 3 ⊢ ((𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝜑) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)))) |
11 | 10 | rexbii2 2488 | . 2 ⊢ (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∃𝑛 ∈ ℤ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑))) |
12 | r19.42v 2634 | . 2 ⊢ (∃𝑛 ∈ ℤ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)) ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) | |
13 | 11, 12 | bitri 184 | 1 ⊢ (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 978 ∈ wcel 2148 ∃wrex 2456 class class class wbr 4003 ‘cfv 5216 ≤ cle 7991 ℤcz 9251 ℤ≥cuz 9526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-cnex 7901 ax-resscn 7902 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2739 df-sbc 2963 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-fv 5224 df-ov 5877 df-neg 8129 df-z 9252 df-uz 9527 |
This theorem is referenced by: 2rexuz 9580 |
Copyright terms: Public domain | W3C validator |