Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexuz2 | GIF version |
Description: Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
Ref | Expression |
---|---|
rexuz2 | ⊢ (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 9493 | . . . . . 6 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) | |
2 | df-3an 975 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀 ≤ 𝑛)) | |
3 | 1, 2 | bitri 183 | . . . . 5 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀 ≤ 𝑛)) |
4 | 3 | anbi1i 455 | . . . 4 ⊢ ((𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝜑) ↔ (((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀 ≤ 𝑛) ∧ 𝜑)) |
5 | anass 399 | . . . . 5 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀 ≤ 𝑛) ∧ 𝜑) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑀 ≤ 𝑛 ∧ 𝜑))) | |
6 | anass 399 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)) ↔ (𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)))) | |
7 | an12 556 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑))) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)))) | |
8 | 6, 7 | bitri 183 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)))) |
9 | 5, 8 | bitri 183 | . . . 4 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑀 ≤ 𝑛) ∧ 𝜑) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)))) |
10 | 4, 9 | bitri 183 | . . 3 ⊢ ((𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝜑) ↔ (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)))) |
11 | 10 | rexbii2 2481 | . 2 ⊢ (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∃𝑛 ∈ ℤ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑))) |
12 | r19.42v 2627 | . 2 ⊢ (∃𝑛 ∈ ℤ (𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑛 ∧ 𝜑)) ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) | |
13 | 11, 12 | bitri 183 | 1 ⊢ (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∧ w3a 973 ∈ wcel 2141 ∃wrex 2449 class class class wbr 3989 ‘cfv 5198 ≤ cle 7955 ℤcz 9212 ℤ≥cuz 9487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-neg 8093 df-z 9213 df-uz 9488 |
This theorem is referenced by: 2rexuz 9541 |
Copyright terms: Public domain | W3C validator |