ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexbiia GIF version

Theorem rexbiia 2520
Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.)
Hypothesis
Ref Expression
ralbiia.1 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rexbiia (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 𝜓)

Proof of Theorem rexbiia
StepHypRef Expression
1 ralbiia.1 . . 3 (𝑥𝐴 → (𝜑𝜓))
21pm5.32i 454 . 2 ((𝑥𝐴𝜑) ↔ (𝑥𝐴𝜓))
32rexbii2 2516 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2175  wrex 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-ial 1556
This theorem depends on definitions:  df-bi 117  df-rex 2489
This theorem is referenced by:  2rexbiia  2521  ceqsrexbv  2903  reu8  2968  reldm  6262  djur  7153  prarloclem3  7592  suplocexprlemell  7808  recexgt0  8635  fsum3  11617  fprodseq  11813  even2n  12104  znf1o  14331  lmres  14638  reeff1o  15163  ioocosf1o  15244
  Copyright terms: Public domain W3C validator