ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexbiia GIF version

Theorem rexbiia 2485
Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.)
Hypothesis
Ref Expression
ralbiia.1 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rexbiia (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 𝜓)

Proof of Theorem rexbiia
StepHypRef Expression
1 ralbiia.1 . . 3 (𝑥𝐴 → (𝜑𝜓))
21pm5.32i 451 . 2 ((𝑥𝐴𝜑) ↔ (𝑥𝐴𝜓))
32rexbii2 2481 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 2141  wrex 2449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-rex 2454
This theorem is referenced by:  2rexbiia  2486  ceqsrexbv  2861  reu8  2926  reldm  6165  djur  7046  prarloclem3  7459  suplocexprlemell  7675  recexgt0  8499  fsum3  11350  fprodseq  11546  even2n  11833  lmres  13042  reeff1o  13488  ioocosf1o  13569
  Copyright terms: Public domain W3C validator