Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexdifpr | GIF version |
Description: Restricted existential quantification over a set with two elements removed. (Contributed by Alexander van der Vekens, 7-Feb-2018.) |
Ref | Expression |
---|---|
rexdifpr | ⊢ (∃𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶})𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifpr 3610 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶)) | |
2 | 3anass 977 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶))) | |
3 | 1, 2 | bitri 183 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶))) |
4 | 3 | anbi1i 455 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶)) ∧ 𝜑)) |
5 | anass 399 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶)) ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ((𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶) ∧ 𝜑))) | |
6 | df-3an 975 | . . . . . 6 ⊢ ((𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑) ↔ ((𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶) ∧ 𝜑)) | |
7 | 6 | bicomi 131 | . . . . 5 ⊢ (((𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶) ∧ 𝜑) ↔ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑)) |
8 | 7 | anbi2i 454 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ ((𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶) ∧ 𝜑)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑))) |
9 | 5, 8 | bitri 183 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶)) ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑))) |
10 | 4, 9 | bitri 183 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑))) |
11 | 10 | rexbii2 2481 | 1 ⊢ (∃𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶})𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∧ w3a 973 ∈ wcel 2141 ≠ wne 2340 ∃wrex 2449 ∖ cdif 3118 {cpr 3584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-sn 3589 df-pr 3590 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |