ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexdifpr GIF version

Theorem rexdifpr 3694
Description: Restricted existential quantification over a set with two elements removed. (Contributed by Alexander van der Vekens, 7-Feb-2018.)
Assertion
Ref Expression
rexdifpr (∃𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶})𝜑 ↔ ∃𝑥𝐴 (𝑥𝐵𝑥𝐶𝜑))

Proof of Theorem rexdifpr
StepHypRef Expression
1 eldifpr 3693 . . . . 5 (𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ↔ (𝑥𝐴𝑥𝐵𝑥𝐶))
2 3anass 1006 . . . . 5 ((𝑥𝐴𝑥𝐵𝑥𝐶) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
31, 2bitri 184 . . . 4 (𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
43anbi1i 458 . . 3 ((𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ∧ 𝜑) ↔ ((𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)) ∧ 𝜑))
5 anass 401 . . . 4 (((𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)) ∧ 𝜑) ↔ (𝑥𝐴 ∧ ((𝑥𝐵𝑥𝐶) ∧ 𝜑)))
6 df-3an 1004 . . . . . 6 ((𝑥𝐵𝑥𝐶𝜑) ↔ ((𝑥𝐵𝑥𝐶) ∧ 𝜑))
76bicomi 132 . . . . 5 (((𝑥𝐵𝑥𝐶) ∧ 𝜑) ↔ (𝑥𝐵𝑥𝐶𝜑))
87anbi2i 457 . . . 4 ((𝑥𝐴 ∧ ((𝑥𝐵𝑥𝐶) ∧ 𝜑)) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶𝜑)))
95, 8bitri 184 . . 3 (((𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)) ∧ 𝜑) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶𝜑)))
104, 9bitri 184 . 2 ((𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ∧ 𝜑) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶𝜑)))
1110rexbii2 2541 1 (∃𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶})𝜑 ↔ ∃𝑥𝐴 (𝑥𝐵𝑥𝐶𝜑))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 1002  wcel 2200  wne 2400  wrex 2509  cdif 3194  {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-sn 3672  df-pr 3673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator