![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zq | GIF version |
Description: An integer is a rational number. (Contributed by NM, 9-Jan-2002.) |
Ref | Expression |
---|---|
zq | ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2179 | . . . . 5 ⊢ (𝑥 = 𝐴 ↔ 𝐴 = 𝑥) | |
2 | zcn 9260 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
3 | 2 | div1d 8739 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → (𝑥 / 1) = 𝑥) |
4 | 3 | eqeq2d 2189 | . . . . 5 ⊢ (𝑥 ∈ ℤ → (𝐴 = (𝑥 / 1) ↔ 𝐴 = 𝑥)) |
5 | 1, 4 | bitr4id 199 | . . . 4 ⊢ (𝑥 ∈ ℤ → (𝑥 = 𝐴 ↔ 𝐴 = (𝑥 / 1))) |
6 | 1nn 8932 | . . . . 5 ⊢ 1 ∈ ℕ | |
7 | oveq2 5885 | . . . . . . 7 ⊢ (𝑦 = 1 → (𝑥 / 𝑦) = (𝑥 / 1)) | |
8 | 7 | eqeq2d 2189 | . . . . . 6 ⊢ (𝑦 = 1 → (𝐴 = (𝑥 / 𝑦) ↔ 𝐴 = (𝑥 / 1))) |
9 | 8 | rspcev 2843 | . . . . 5 ⊢ ((1 ∈ ℕ ∧ 𝐴 = (𝑥 / 1)) → ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
10 | 6, 9 | mpan 424 | . . . 4 ⊢ (𝐴 = (𝑥 / 1) → ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
11 | 5, 10 | biimtrdi 163 | . . 3 ⊢ (𝑥 ∈ ℤ → (𝑥 = 𝐴 → ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))) |
12 | 11 | reximia 2572 | . 2 ⊢ (∃𝑥 ∈ ℤ 𝑥 = 𝐴 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
13 | risset 2505 | . 2 ⊢ (𝐴 ∈ ℤ ↔ ∃𝑥 ∈ ℤ 𝑥 = 𝐴) | |
14 | elq 9624 | . 2 ⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | |
15 | 12, 13, 14 | 3imtr4i 201 | 1 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 (class class class)co 5877 1c1 7814 / cdiv 8631 ℕcn 8921 ℤcz 9255 ℚcq 9621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-po 4298 df-iso 4299 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-z 9256 df-q 9622 |
This theorem is referenced by: zssq 9629 qdivcl 9645 irrmul 9649 qbtwnz 10254 qbtwnxr 10260 flqlt 10285 flid 10286 flqltnz 10289 flqbi2 10293 flqaddz 10299 flqmulnn0 10301 ceilid 10317 flqeqceilz 10320 flqdiv 10323 modqcl 10328 mulqmod0 10332 modqfrac 10339 zmod10 10342 modqmulnn 10344 zmodcl 10346 zmodfz 10348 zmodid2 10354 q0mod 10357 q1mod 10358 modqcyc 10361 mulp1mod1 10367 modqmuladd 10368 modqmuladdim 10369 modqmuladdnn0 10370 m1modnnsub1 10372 addmodid 10374 modqm1p1mod0 10377 modqltm1p1mod 10378 modqmul1 10379 modqmul12d 10380 q2txmodxeq0 10386 modifeq2int 10388 modaddmodup 10389 modaddmodlo 10390 modqaddmulmod 10393 modqdi 10394 modqsubdir 10395 modsumfzodifsn 10398 addmodlteq 10400 qexpcl 10538 qexpclz 10543 iexpcyc 10627 qsqeqor 10633 facavg 10728 bcval 10731 qabsor 11086 modfsummodlemstep 11467 egt2lt3 11789 dvdsval3 11800 p1modz1 11803 moddvds 11808 modm1div 11809 absdvdsb 11818 dvdsabsb 11819 dvdslelemd 11851 dvdsmod 11870 mulmoddvds 11871 divalglemnn 11925 divalgmod 11934 fldivndvdslt 11942 gcdabs 11991 gcdabs1 11992 modgcd 11994 bezoutlemnewy 11999 bezoutlemstep 12000 eucalglt 12059 lcmabs 12078 sqrt2irraplemnn 12181 nn0sqrtelqelz 12208 crth 12226 phimullem 12227 eulerthlema 12232 eulerthlemh 12233 fermltl 12236 prmdiv 12237 prmdiveq 12238 odzdvds 12247 vfermltl 12253 powm2modprm 12254 modprm0 12256 modprmn0modprm0 12258 pceu 12297 pczpre 12299 pcdiv 12304 pc0 12306 pcqdiv 12309 pcrec 12310 pcexp 12311 pcxcl 12313 pcdvdstr 12328 pcgcd1 12329 pc2dvds 12331 pc11 12332 pcaddlem 12340 pcadd 12341 fldivp1 12348 qexpz 12352 4sqlem5 12382 4sqlem6 12383 4sqlem10 12387 mulgmodid 13027 2logb9irrALT 14431 2irrexpq 14433 2irrexpqap 14435 lgslem1 14440 lgsvalmod 14459 lgsneg 14464 lgsmod 14466 lgsdir2lem4 14471 lgsdirprm 14474 lgsdilem2 14476 lgsne0 14478 lgseisenlem1 14489 m1lgs 14491 apdifflemr 14834 apdiff 14835 |
Copyright terms: Public domain | W3C validator |