ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zq GIF version

Theorem zq 9313
Description: An integer is a rational number. (Contributed by NM, 9-Jan-2002.)
Assertion
Ref Expression
zq (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)

Proof of Theorem zq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zcn 8956 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
21div1d 8446 . . . . . 6 (𝑥 ∈ ℤ → (𝑥 / 1) = 𝑥)
32eqeq2d 2124 . . . . 5 (𝑥 ∈ ℤ → (𝐴 = (𝑥 / 1) ↔ 𝐴 = 𝑥))
4 eqcom 2115 . . . . 5 (𝑥 = 𝐴𝐴 = 𝑥)
53, 4syl6rbbr 198 . . . 4 (𝑥 ∈ ℤ → (𝑥 = 𝐴𝐴 = (𝑥 / 1)))
6 1nn 8634 . . . . 5 1 ∈ ℕ
7 oveq2 5734 . . . . . . 7 (𝑦 = 1 → (𝑥 / 𝑦) = (𝑥 / 1))
87eqeq2d 2124 . . . . . 6 (𝑦 = 1 → (𝐴 = (𝑥 / 𝑦) ↔ 𝐴 = (𝑥 / 1)))
98rspcev 2758 . . . . 5 ((1 ∈ ℕ ∧ 𝐴 = (𝑥 / 1)) → ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
106, 9mpan 418 . . . 4 (𝐴 = (𝑥 / 1) → ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
115, 10syl6bi 162 . . 3 (𝑥 ∈ ℤ → (𝑥 = 𝐴 → ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
1211reximia 2499 . 2 (∃𝑥 ∈ ℤ 𝑥 = 𝐴 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
13 risset 2435 . 2 (𝐴 ∈ ℤ ↔ ∃𝑥 ∈ ℤ 𝑥 = 𝐴)
14 elq 9309 . 2 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
1512, 13, 143imtr4i 200 1 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1312  wcel 1461  wrex 2389  (class class class)co 5726  1c1 7541   / cdiv 8338  cn 8623  cz 8951  cq 9306
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-cnex 7629  ax-resscn 7630  ax-1cn 7631  ax-1re 7632  ax-icn 7633  ax-addcl 7634  ax-addrcl 7635  ax-mulcl 7636  ax-mulrcl 7637  ax-addcom 7638  ax-mulcom 7639  ax-addass 7640  ax-mulass 7641  ax-distr 7642  ax-i2m1 7643  ax-0lt1 7644  ax-1rid 7645  ax-0id 7646  ax-rnegex 7647  ax-precex 7648  ax-cnre 7649  ax-pre-ltirr 7650  ax-pre-ltwlin 7651  ax-pre-lttrn 7652  ax-pre-apti 7653  ax-pre-ltadd 7654  ax-pre-mulgt0 7655  ax-pre-mulext 7656
This theorem depends on definitions:  df-bi 116  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rmo 2396  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-po 4176  df-iso 4177  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5989  df-2nd 5990  df-pnf 7719  df-mnf 7720  df-xr 7721  df-ltxr 7722  df-le 7723  df-sub 7851  df-neg 7852  df-reap 8248  df-ap 8255  df-div 8339  df-inn 8624  df-z 8952  df-q 9307
This theorem is referenced by:  zssq  9314  qdivcl  9330  irrmul  9334  qbtwnz  9915  qbtwnxr  9921  flqlt  9942  flid  9943  flqltnz  9946  flqbi2  9950  flqaddz  9956  flqmulnn0  9958  ceilid  9974  flqeqceilz  9977  flqdiv  9980  modqcl  9985  mulqmod0  9989  modqfrac  9996  zmod10  9999  modqmulnn  10001  zmodcl  10003  zmodfz  10005  zmodid2  10011  q0mod  10014  q1mod  10015  modqcyc  10018  mulp1mod1  10024  modqmuladd  10025  modqmuladdim  10026  modqmuladdnn0  10027  m1modnnsub1  10029  addmodid  10031  modqm1p1mod0  10034  modqltm1p1mod  10035  modqmul1  10036  modqmul12d  10037  q2txmodxeq0  10043  modifeq2int  10045  modaddmodup  10046  modaddmodlo  10047  modqaddmulmod  10050  modqdi  10051  modqsubdir  10052  modsumfzodifsn  10055  addmodlteq  10057  qexpcl  10195  qexpclz  10200  iexpcyc  10283  facavg  10378  bcval  10381  qabsor  10732  modfsummodlemstep  11111  egt2lt3  11327  dvdsval3  11338  moddvds  11343  absdvdsb  11352  dvdsabsb  11353  dvdslelemd  11382  dvdsmod  11401  mulmoddvds  11402  divalglemnn  11456  divalgmod  11465  fldivndvdslt  11473  gcdabs  11517  gcdabs1  11518  modgcd  11520  bezoutlemnewy  11523  bezoutlemstep  11524  eucalglt  11577  lcmabs  11596  sqrt2irraplemnn  11695  nn0sqrtelqelz  11722  crth  11738  phimullem  11739
  Copyright terms: Public domain W3C validator