Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zq | GIF version |
Description: An integer is a rational number. (Contributed by NM, 9-Jan-2002.) |
Ref | Expression |
---|---|
zq | ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2167 | . . . . 5 ⊢ (𝑥 = 𝐴 ↔ 𝐴 = 𝑥) | |
2 | zcn 9196 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
3 | 2 | div1d 8676 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → (𝑥 / 1) = 𝑥) |
4 | 3 | eqeq2d 2177 | . . . . 5 ⊢ (𝑥 ∈ ℤ → (𝐴 = (𝑥 / 1) ↔ 𝐴 = 𝑥)) |
5 | 1, 4 | bitr4id 198 | . . . 4 ⊢ (𝑥 ∈ ℤ → (𝑥 = 𝐴 ↔ 𝐴 = (𝑥 / 1))) |
6 | 1nn 8868 | . . . . 5 ⊢ 1 ∈ ℕ | |
7 | oveq2 5850 | . . . . . . 7 ⊢ (𝑦 = 1 → (𝑥 / 𝑦) = (𝑥 / 1)) | |
8 | 7 | eqeq2d 2177 | . . . . . 6 ⊢ (𝑦 = 1 → (𝐴 = (𝑥 / 𝑦) ↔ 𝐴 = (𝑥 / 1))) |
9 | 8 | rspcev 2830 | . . . . 5 ⊢ ((1 ∈ ℕ ∧ 𝐴 = (𝑥 / 1)) → ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
10 | 6, 9 | mpan 421 | . . . 4 ⊢ (𝐴 = (𝑥 / 1) → ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
11 | 5, 10 | syl6bi 162 | . . 3 ⊢ (𝑥 ∈ ℤ → (𝑥 = 𝐴 → ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))) |
12 | 11 | reximia 2561 | . 2 ⊢ (∃𝑥 ∈ ℤ 𝑥 = 𝐴 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
13 | risset 2494 | . 2 ⊢ (𝐴 ∈ ℤ ↔ ∃𝑥 ∈ ℤ 𝑥 = 𝐴) | |
14 | elq 9560 | . 2 ⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | |
15 | 12, 13, 14 | 3imtr4i 200 | 1 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 (class class class)co 5842 1c1 7754 / cdiv 8568 ℕcn 8857 ℤcz 9191 ℚcq 9557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-z 9192 df-q 9558 |
This theorem is referenced by: zssq 9565 qdivcl 9581 irrmul 9585 qbtwnz 10187 qbtwnxr 10193 flqlt 10218 flid 10219 flqltnz 10222 flqbi2 10226 flqaddz 10232 flqmulnn0 10234 ceilid 10250 flqeqceilz 10253 flqdiv 10256 modqcl 10261 mulqmod0 10265 modqfrac 10272 zmod10 10275 modqmulnn 10277 zmodcl 10279 zmodfz 10281 zmodid2 10287 q0mod 10290 q1mod 10291 modqcyc 10294 mulp1mod1 10300 modqmuladd 10301 modqmuladdim 10302 modqmuladdnn0 10303 m1modnnsub1 10305 addmodid 10307 modqm1p1mod0 10310 modqltm1p1mod 10311 modqmul1 10312 modqmul12d 10313 q2txmodxeq0 10319 modifeq2int 10321 modaddmodup 10322 modaddmodlo 10323 modqaddmulmod 10326 modqdi 10327 modqsubdir 10328 modsumfzodifsn 10331 addmodlteq 10333 qexpcl 10471 qexpclz 10476 iexpcyc 10559 qsqeqor 10565 facavg 10659 bcval 10662 qabsor 11017 modfsummodlemstep 11398 egt2lt3 11720 dvdsval3 11731 p1modz1 11734 moddvds 11739 modm1div 11740 absdvdsb 11749 dvdsabsb 11750 dvdslelemd 11781 dvdsmod 11800 mulmoddvds 11801 divalglemnn 11855 divalgmod 11864 fldivndvdslt 11872 gcdabs 11921 gcdabs1 11922 modgcd 11924 bezoutlemnewy 11929 bezoutlemstep 11930 eucalglt 11989 lcmabs 12008 sqrt2irraplemnn 12111 nn0sqrtelqelz 12138 crth 12156 phimullem 12157 eulerthlema 12162 eulerthlemh 12163 fermltl 12166 prmdiv 12167 prmdiveq 12168 odzdvds 12177 vfermltl 12183 powm2modprm 12184 modprm0 12186 modprmn0modprm0 12188 pceu 12227 pczpre 12229 pcdiv 12234 pc0 12236 pcqdiv 12239 pcrec 12240 pcexp 12241 pcxcl 12243 pcdvdstr 12258 pcgcd1 12259 pc2dvds 12261 pc11 12262 pcaddlem 12270 pcadd 12271 fldivp1 12278 qexpz 12282 4sqlem5 12312 4sqlem6 12313 4sqlem10 12317 2logb9irrALT 13532 2irrexpq 13534 2irrexpqap 13536 lgslem1 13541 lgsvalmod 13560 lgsneg 13565 lgsmod 13567 lgsdir2lem4 13572 lgsdirprm 13575 lgsdilem2 13577 lgsne0 13579 apdifflemr 13926 apdiff 13927 |
Copyright terms: Public domain | W3C validator |