Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zq | GIF version |
Description: An integer is a rational number. (Contributed by NM, 9-Jan-2002.) |
Ref | Expression |
---|---|
zq | ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2172 | . . . . 5 ⊢ (𝑥 = 𝐴 ↔ 𝐴 = 𝑥) | |
2 | zcn 9217 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
3 | 2 | div1d 8697 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → (𝑥 / 1) = 𝑥) |
4 | 3 | eqeq2d 2182 | . . . . 5 ⊢ (𝑥 ∈ ℤ → (𝐴 = (𝑥 / 1) ↔ 𝐴 = 𝑥)) |
5 | 1, 4 | bitr4id 198 | . . . 4 ⊢ (𝑥 ∈ ℤ → (𝑥 = 𝐴 ↔ 𝐴 = (𝑥 / 1))) |
6 | 1nn 8889 | . . . . 5 ⊢ 1 ∈ ℕ | |
7 | oveq2 5861 | . . . . . . 7 ⊢ (𝑦 = 1 → (𝑥 / 𝑦) = (𝑥 / 1)) | |
8 | 7 | eqeq2d 2182 | . . . . . 6 ⊢ (𝑦 = 1 → (𝐴 = (𝑥 / 𝑦) ↔ 𝐴 = (𝑥 / 1))) |
9 | 8 | rspcev 2834 | . . . . 5 ⊢ ((1 ∈ ℕ ∧ 𝐴 = (𝑥 / 1)) → ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
10 | 6, 9 | mpan 422 | . . . 4 ⊢ (𝐴 = (𝑥 / 1) → ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
11 | 5, 10 | syl6bi 162 | . . 3 ⊢ (𝑥 ∈ ℤ → (𝑥 = 𝐴 → ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))) |
12 | 11 | reximia 2565 | . 2 ⊢ (∃𝑥 ∈ ℤ 𝑥 = 𝐴 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
13 | risset 2498 | . 2 ⊢ (𝐴 ∈ ℤ ↔ ∃𝑥 ∈ ℤ 𝑥 = 𝐴) | |
14 | elq 9581 | . 2 ⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | |
15 | 12, 13, 14 | 3imtr4i 200 | 1 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 ∃wrex 2449 (class class class)co 5853 1c1 7775 / cdiv 8589 ℕcn 8878 ℤcz 9212 ℚcq 9578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-z 9213 df-q 9579 |
This theorem is referenced by: zssq 9586 qdivcl 9602 irrmul 9606 qbtwnz 10208 qbtwnxr 10214 flqlt 10239 flid 10240 flqltnz 10243 flqbi2 10247 flqaddz 10253 flqmulnn0 10255 ceilid 10271 flqeqceilz 10274 flqdiv 10277 modqcl 10282 mulqmod0 10286 modqfrac 10293 zmod10 10296 modqmulnn 10298 zmodcl 10300 zmodfz 10302 zmodid2 10308 q0mod 10311 q1mod 10312 modqcyc 10315 mulp1mod1 10321 modqmuladd 10322 modqmuladdim 10323 modqmuladdnn0 10324 m1modnnsub1 10326 addmodid 10328 modqm1p1mod0 10331 modqltm1p1mod 10332 modqmul1 10333 modqmul12d 10334 q2txmodxeq0 10340 modifeq2int 10342 modaddmodup 10343 modaddmodlo 10344 modqaddmulmod 10347 modqdi 10348 modqsubdir 10349 modsumfzodifsn 10352 addmodlteq 10354 qexpcl 10492 qexpclz 10497 iexpcyc 10580 qsqeqor 10586 facavg 10680 bcval 10683 qabsor 11039 modfsummodlemstep 11420 egt2lt3 11742 dvdsval3 11753 p1modz1 11756 moddvds 11761 modm1div 11762 absdvdsb 11771 dvdsabsb 11772 dvdslelemd 11803 dvdsmod 11822 mulmoddvds 11823 divalglemnn 11877 divalgmod 11886 fldivndvdslt 11894 gcdabs 11943 gcdabs1 11944 modgcd 11946 bezoutlemnewy 11951 bezoutlemstep 11952 eucalglt 12011 lcmabs 12030 sqrt2irraplemnn 12133 nn0sqrtelqelz 12160 crth 12178 phimullem 12179 eulerthlema 12184 eulerthlemh 12185 fermltl 12188 prmdiv 12189 prmdiveq 12190 odzdvds 12199 vfermltl 12205 powm2modprm 12206 modprm0 12208 modprmn0modprm0 12210 pceu 12249 pczpre 12251 pcdiv 12256 pc0 12258 pcqdiv 12261 pcrec 12262 pcexp 12263 pcxcl 12265 pcdvdstr 12280 pcgcd1 12281 pc2dvds 12283 pc11 12284 pcaddlem 12292 pcadd 12293 fldivp1 12300 qexpz 12304 4sqlem5 12334 4sqlem6 12335 4sqlem10 12339 2logb9irrALT 13686 2irrexpq 13688 2irrexpqap 13690 lgslem1 13695 lgsvalmod 13714 lgsneg 13719 lgsmod 13721 lgsdir2lem4 13726 lgsdirprm 13729 lgsdilem2 13731 lgsne0 13733 apdifflemr 14079 apdiff 14080 |
Copyright terms: Public domain | W3C validator |