![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zq | GIF version |
Description: An integer is a rational number. (Contributed by NM, 9-Jan-2002.) |
Ref | Expression |
---|---|
zq | ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 8651 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
2 | 1 | div1d 8145 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → (𝑥 / 1) = 𝑥) |
3 | 2 | eqeq2d 2094 | . . . . 5 ⊢ (𝑥 ∈ ℤ → (𝐴 = (𝑥 / 1) ↔ 𝐴 = 𝑥)) |
4 | eqcom 2085 | . . . . 5 ⊢ (𝑥 = 𝐴 ↔ 𝐴 = 𝑥) | |
5 | 3, 4 | syl6rbbr 197 | . . . 4 ⊢ (𝑥 ∈ ℤ → (𝑥 = 𝐴 ↔ 𝐴 = (𝑥 / 1))) |
6 | 1nn 8327 | . . . . 5 ⊢ 1 ∈ ℕ | |
7 | oveq2 5599 | . . . . . . 7 ⊢ (𝑦 = 1 → (𝑥 / 𝑦) = (𝑥 / 1)) | |
8 | 7 | eqeq2d 2094 | . . . . . 6 ⊢ (𝑦 = 1 → (𝐴 = (𝑥 / 𝑦) ↔ 𝐴 = (𝑥 / 1))) |
9 | 8 | rspcev 2712 | . . . . 5 ⊢ ((1 ∈ ℕ ∧ 𝐴 = (𝑥 / 1)) → ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
10 | 6, 9 | mpan 415 | . . . 4 ⊢ (𝐴 = (𝑥 / 1) → ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
11 | 5, 10 | syl6bi 161 | . . 3 ⊢ (𝑥 ∈ ℤ → (𝑥 = 𝐴 → ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))) |
12 | 11 | reximia 2462 | . 2 ⊢ (∃𝑥 ∈ ℤ 𝑥 = 𝐴 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
13 | risset 2400 | . 2 ⊢ (𝐴 ∈ ℤ ↔ ∃𝑥 ∈ ℤ 𝑥 = 𝐴) | |
14 | elq 9002 | . 2 ⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | |
15 | 12, 13, 14 | 3imtr4i 199 | 1 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 ∈ wcel 1434 ∃wrex 2354 (class class class)co 5591 1c1 7254 / cdiv 8037 ℕcn 8316 ℤcz 8646 ℚcq 8999 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3922 ax-pow 3974 ax-pr 4000 ax-un 4224 ax-setind 4316 ax-cnex 7339 ax-resscn 7340 ax-1cn 7341 ax-1re 7342 ax-icn 7343 ax-addcl 7344 ax-addrcl 7345 ax-mulcl 7346 ax-mulrcl 7347 ax-addcom 7348 ax-mulcom 7349 ax-addass 7350 ax-mulass 7351 ax-distr 7352 ax-i2m1 7353 ax-0lt1 7354 ax-1rid 7355 ax-0id 7356 ax-rnegex 7357 ax-precex 7358 ax-cnre 7359 ax-pre-ltirr 7360 ax-pre-ltwlin 7361 ax-pre-lttrn 7362 ax-pre-apti 7363 ax-pre-ltadd 7364 ax-pre-mulgt0 7365 ax-pre-mulext 7366 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2614 df-sbc 2827 df-csb 2920 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-int 3663 df-iun 3706 df-br 3812 df-opab 3866 df-mpt 3867 df-id 4084 df-po 4087 df-iso 4088 df-xp 4407 df-rel 4408 df-cnv 4409 df-co 4410 df-dm 4411 df-rn 4412 df-res 4413 df-ima 4414 df-iota 4934 df-fun 4971 df-fn 4972 df-f 4973 df-fv 4977 df-riota 5547 df-ov 5594 df-oprab 5595 df-mpt2 5596 df-1st 5846 df-2nd 5847 df-pnf 7427 df-mnf 7428 df-xr 7429 df-ltxr 7430 df-le 7431 df-sub 7558 df-neg 7559 df-reap 7952 df-ap 7959 df-div 8038 df-inn 8317 df-z 8647 df-q 9000 |
This theorem is referenced by: zssq 9007 qdivcl 9023 irrmul 9027 qbtwnz 9552 qbtwnxr 9558 flqlt 9579 flid 9580 flqltnz 9583 flqbi2 9587 flqaddz 9593 flqmulnn0 9595 ceilid 9611 flqeqceilz 9614 flqdiv 9617 modqcl 9622 mulqmod0 9626 modqfrac 9633 zmod10 9636 modqmulnn 9638 zmodcl 9640 zmodfz 9642 zmodid2 9648 q0mod 9651 q1mod 9652 modqcyc 9655 mulp1mod1 9661 modqmuladd 9662 modqmuladdim 9663 modqmuladdnn0 9664 m1modnnsub1 9666 addmodid 9668 modqm1p1mod0 9671 modqltm1p1mod 9672 modqmul1 9673 modqmul12d 9674 q2txmodxeq0 9680 modifeq2int 9682 modaddmodup 9683 modaddmodlo 9684 modqaddmulmod 9687 modqdi 9688 modqsubdir 9689 modsumfzodifsn 9692 addmodlteq 9694 qexpcl 9808 qexpclz 9813 iexpcyc 9895 facavg 9989 bcval 9992 qabsor 10335 dvdsval3 10580 moddvds 10585 absdvdsb 10594 dvdsabsb 10595 dvdslelemd 10624 dvdsmod 10643 mulmoddvds 10644 divalglemnn 10698 divalgmod 10707 fldivndvdslt 10715 gcdabs 10759 gcdabs1 10760 modgcd 10762 bezoutlemnewy 10765 bezoutlemstep 10766 eucalglt 10819 lcmabs 10838 sqrt2irraplemnn 10937 nn0sqrtelqelz 10964 crth 10980 phimullem 10981 |
Copyright terms: Public domain | W3C validator |