ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunpw GIF version

Theorem iunpw 4458
Description: An indexed union of a power class in terms of the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.)
Hypothesis
Ref Expression
iunpw.1 𝐴 ∈ V
Assertion
Ref Expression
iunpw (∃𝑥𝐴 𝑥 = 𝐴 ↔ 𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem iunpw
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3166 . . . . . . . 8 (𝑥 = 𝐴 → (𝑦𝑥𝑦 𝐴))
21biimprcd 159 . . . . . . 7 (𝑦 𝐴 → (𝑥 = 𝐴𝑦𝑥))
32reximdv 2567 . . . . . 6 (𝑦 𝐴 → (∃𝑥𝐴 𝑥 = 𝐴 → ∃𝑥𝐴 𝑦𝑥))
43com12 30 . . . . 5 (∃𝑥𝐴 𝑥 = 𝐴 → (𝑦 𝐴 → ∃𝑥𝐴 𝑦𝑥))
5 ssiun 3908 . . . . . 6 (∃𝑥𝐴 𝑦𝑥𝑦 𝑥𝐴 𝑥)
6 uniiun 3919 . . . . . 6 𝐴 = 𝑥𝐴 𝑥
75, 6sseqtrrdi 3191 . . . . 5 (∃𝑥𝐴 𝑦𝑥𝑦 𝐴)
84, 7impbid1 141 . . . 4 (∃𝑥𝐴 𝑥 = 𝐴 → (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦𝑥))
9 vex 2729 . . . . 5 𝑦 ∈ V
109elpw 3565 . . . 4 (𝑦 ∈ 𝒫 𝐴𝑦 𝐴)
11 eliun 3870 . . . . 5 (𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∃𝑥𝐴 𝑦 ∈ 𝒫 𝑥)
12 df-pw 3561 . . . . . . 7 𝒫 𝑥 = {𝑦𝑦𝑥}
1312abeq2i 2277 . . . . . 6 (𝑦 ∈ 𝒫 𝑥𝑦𝑥)
1413rexbii 2473 . . . . 5 (∃𝑥𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∃𝑥𝐴 𝑦𝑥)
1511, 14bitri 183 . . . 4 (𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∃𝑥𝐴 𝑦𝑥)
168, 10, 153bitr4g 222 . . 3 (∃𝑥𝐴 𝑥 = 𝐴 → (𝑦 ∈ 𝒫 𝐴𝑦 𝑥𝐴 𝒫 𝑥))
1716eqrdv 2163 . 2 (∃𝑥𝐴 𝑥 = 𝐴 → 𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥)
18 ssid 3162 . . . . 5 𝐴 𝐴
19 iunpw.1 . . . . . . . 8 𝐴 ∈ V
2019uniex 4415 . . . . . . 7 𝐴 ∈ V
2120elpw 3565 . . . . . 6 ( 𝐴 ∈ 𝒫 𝐴 𝐴 𝐴)
22 eleq2 2230 . . . . . 6 (𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥 → ( 𝐴 ∈ 𝒫 𝐴 𝐴 𝑥𝐴 𝒫 𝑥))
2321, 22bitr3id 193 . . . . 5 (𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥 → ( 𝐴 𝐴 𝐴 𝑥𝐴 𝒫 𝑥))
2418, 23mpbii 147 . . . 4 (𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥 𝐴 𝑥𝐴 𝒫 𝑥)
25 eliun 3870 . . . 4 ( 𝐴 𝑥𝐴 𝒫 𝑥 ↔ ∃𝑥𝐴 𝐴 ∈ 𝒫 𝑥)
2624, 25sylib 121 . . 3 (𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥 → ∃𝑥𝐴 𝐴 ∈ 𝒫 𝑥)
27 elssuni 3817 . . . . . . 7 (𝑥𝐴𝑥 𝐴)
28 elpwi 3568 . . . . . . 7 ( 𝐴 ∈ 𝒫 𝑥 𝐴𝑥)
2927, 28anim12i 336 . . . . . 6 ((𝑥𝐴 𝐴 ∈ 𝒫 𝑥) → (𝑥 𝐴 𝐴𝑥))
30 eqss 3157 . . . . . 6 (𝑥 = 𝐴 ↔ (𝑥 𝐴 𝐴𝑥))
3129, 30sylibr 133 . . . . 5 ((𝑥𝐴 𝐴 ∈ 𝒫 𝑥) → 𝑥 = 𝐴)
3231ex 114 . . . 4 (𝑥𝐴 → ( 𝐴 ∈ 𝒫 𝑥𝑥 = 𝐴))
3332reximia 2561 . . 3 (∃𝑥𝐴 𝐴 ∈ 𝒫 𝑥 → ∃𝑥𝐴 𝑥 = 𝐴)
3426, 33syl 14 . 2 (𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥 → ∃𝑥𝐴 𝑥 = 𝐴)
3517, 34impbii 125 1 (∃𝑥𝐴 𝑥 = 𝐴 ↔ 𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1343  wcel 2136  wrex 2445  Vcvv 2726  wss 3116  𝒫 cpw 3559   cuni 3789   ciun 3866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-uni 3790  df-iun 3868
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator