ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunpw GIF version

Theorem iunpw 4292
Description: An indexed union of a power class in terms of the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.)
Hypothesis
Ref Expression
iunpw.1 𝐴 ∈ V
Assertion
Ref Expression
iunpw (∃𝑥𝐴 𝑥 = 𝐴 ↔ 𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem iunpw
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3046 . . . . . . . 8 (𝑥 = 𝐴 → (𝑦𝑥𝑦 𝐴))
21biimprcd 158 . . . . . . 7 (𝑦 𝐴 → (𝑥 = 𝐴𝑦𝑥))
32reximdv 2474 . . . . . 6 (𝑦 𝐴 → (∃𝑥𝐴 𝑥 = 𝐴 → ∃𝑥𝐴 𝑦𝑥))
43com12 30 . . . . 5 (∃𝑥𝐴 𝑥 = 𝐴 → (𝑦 𝐴 → ∃𝑥𝐴 𝑦𝑥))
5 ssiun 3767 . . . . . 6 (∃𝑥𝐴 𝑦𝑥𝑦 𝑥𝐴 𝑥)
6 uniiun 3778 . . . . . 6 𝐴 = 𝑥𝐴 𝑥
75, 6syl6sseqr 3071 . . . . 5 (∃𝑥𝐴 𝑦𝑥𝑦 𝐴)
84, 7impbid1 140 . . . 4 (∃𝑥𝐴 𝑥 = 𝐴 → (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦𝑥))
9 vex 2622 . . . . 5 𝑦 ∈ V
109elpw 3431 . . . 4 (𝑦 ∈ 𝒫 𝐴𝑦 𝐴)
11 eliun 3729 . . . . 5 (𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∃𝑥𝐴 𝑦 ∈ 𝒫 𝑥)
12 df-pw 3427 . . . . . . 7 𝒫 𝑥 = {𝑦𝑦𝑥}
1312abeq2i 2198 . . . . . 6 (𝑦 ∈ 𝒫 𝑥𝑦𝑥)
1413rexbii 2385 . . . . 5 (∃𝑥𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∃𝑥𝐴 𝑦𝑥)
1511, 14bitri 182 . . . 4 (𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∃𝑥𝐴 𝑦𝑥)
168, 10, 153bitr4g 221 . . 3 (∃𝑥𝐴 𝑥 = 𝐴 → (𝑦 ∈ 𝒫 𝐴𝑦 𝑥𝐴 𝒫 𝑥))
1716eqrdv 2086 . 2 (∃𝑥𝐴 𝑥 = 𝐴 → 𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥)
18 ssid 3042 . . . . 5 𝐴 𝐴
19 iunpw.1 . . . . . . . 8 𝐴 ∈ V
2019uniex 4255 . . . . . . 7 𝐴 ∈ V
2120elpw 3431 . . . . . 6 ( 𝐴 ∈ 𝒫 𝐴 𝐴 𝐴)
22 eleq2 2151 . . . . . 6 (𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥 → ( 𝐴 ∈ 𝒫 𝐴 𝐴 𝑥𝐴 𝒫 𝑥))
2321, 22syl5bbr 192 . . . . 5 (𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥 → ( 𝐴 𝐴 𝐴 𝑥𝐴 𝒫 𝑥))
2418, 23mpbii 146 . . . 4 (𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥 𝐴 𝑥𝐴 𝒫 𝑥)
25 eliun 3729 . . . 4 ( 𝐴 𝑥𝐴 𝒫 𝑥 ↔ ∃𝑥𝐴 𝐴 ∈ 𝒫 𝑥)
2624, 25sylib 120 . . 3 (𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥 → ∃𝑥𝐴 𝐴 ∈ 𝒫 𝑥)
27 elssuni 3676 . . . . . . 7 (𝑥𝐴𝑥 𝐴)
28 elpwi 3434 . . . . . . 7 ( 𝐴 ∈ 𝒫 𝑥 𝐴𝑥)
2927, 28anim12i 331 . . . . . 6 ((𝑥𝐴 𝐴 ∈ 𝒫 𝑥) → (𝑥 𝐴 𝐴𝑥))
30 eqss 3038 . . . . . 6 (𝑥 = 𝐴 ↔ (𝑥 𝐴 𝐴𝑥))
3129, 30sylibr 132 . . . . 5 ((𝑥𝐴 𝐴 ∈ 𝒫 𝑥) → 𝑥 = 𝐴)
3231ex 113 . . . 4 (𝑥𝐴 → ( 𝐴 ∈ 𝒫 𝑥𝑥 = 𝐴))
3332reximia 2468 . . 3 (∃𝑥𝐴 𝐴 ∈ 𝒫 𝑥 → ∃𝑥𝐴 𝑥 = 𝐴)
3426, 33syl 14 . 2 (𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥 → ∃𝑥𝐴 𝑥 = 𝐴)
3517, 34impbii 124 1 (∃𝑥𝐴 𝑥 = 𝐴 ↔ 𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥)
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103   = wceq 1289  wcel 1438  wrex 2360  Vcvv 2619  wss 2997  𝒫 cpw 3425   cuni 3648   ciun 3725
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-un 4251
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-in 3003  df-ss 3010  df-pw 3427  df-uni 3649  df-iun 3727
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator