| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qmulz | GIF version | ||
| Description: If 𝐴 is rational, then some integer multiple of it is an integer. (Contributed by NM, 7-Nov-2008.) (Revised by Mario Carneiro, 22-Jul-2014.) |
| Ref | Expression |
|---|---|
| qmulz | ⊢ (𝐴 ∈ ℚ → ∃𝑥 ∈ ℕ (𝐴 · 𝑥) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq 9756 | . 2 ⊢ (𝐴 ∈ ℚ ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℕ 𝐴 = (𝑦 / 𝑥)) | |
| 2 | rexcom 2671 | . . 3 ⊢ (∃𝑦 ∈ ℤ ∃𝑥 ∈ ℕ 𝐴 = (𝑦 / 𝑥) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℤ 𝐴 = (𝑦 / 𝑥)) | |
| 3 | zcn 9390 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
| 4 | 3 | adantl 277 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℂ) |
| 5 | nncn 9057 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℂ) | |
| 6 | 5 | adantr 276 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℂ) |
| 7 | nnap0 9078 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕ → 𝑥 # 0) | |
| 8 | 7 | adantr 276 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → 𝑥 # 0) |
| 9 | 4, 6, 8 | divcanap1d 8877 | . . . . . . 7 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → ((𝑦 / 𝑥) · 𝑥) = 𝑦) |
| 10 | simpr 110 | . . . . . . 7 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℤ) | |
| 11 | 9, 10 | eqeltrd 2283 | . . . . . 6 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → ((𝑦 / 𝑥) · 𝑥) ∈ ℤ) |
| 12 | oveq1 5961 | . . . . . . 7 ⊢ (𝐴 = (𝑦 / 𝑥) → (𝐴 · 𝑥) = ((𝑦 / 𝑥) · 𝑥)) | |
| 13 | 12 | eleq1d 2275 | . . . . . 6 ⊢ (𝐴 = (𝑦 / 𝑥) → ((𝐴 · 𝑥) ∈ ℤ ↔ ((𝑦 / 𝑥) · 𝑥) ∈ ℤ)) |
| 14 | 11, 13 | syl5ibrcom 157 | . . . . 5 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → (𝐴 = (𝑦 / 𝑥) → (𝐴 · 𝑥) ∈ ℤ)) |
| 15 | 14 | rexlimdva 2624 | . . . 4 ⊢ (𝑥 ∈ ℕ → (∃𝑦 ∈ ℤ 𝐴 = (𝑦 / 𝑥) → (𝐴 · 𝑥) ∈ ℤ)) |
| 16 | 15 | reximia 2602 | . . 3 ⊢ (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℤ 𝐴 = (𝑦 / 𝑥) → ∃𝑥 ∈ ℕ (𝐴 · 𝑥) ∈ ℤ) |
| 17 | 2, 16 | sylbi 121 | . 2 ⊢ (∃𝑦 ∈ ℤ ∃𝑥 ∈ ℕ 𝐴 = (𝑦 / 𝑥) → ∃𝑥 ∈ ℕ (𝐴 · 𝑥) ∈ ℤ) |
| 18 | 1, 17 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℚ → ∃𝑥 ∈ ℕ (𝐴 · 𝑥) ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 class class class wbr 4048 (class class class)co 5954 ℂcc 7936 0cc0 7938 · cmul 7943 # cap 8667 / cdiv 8758 ℕcn 9049 ℤcz 9385 ℚcq 9753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-po 4348 df-iso 4349 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-inn 9050 df-z 9386 df-q 9754 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |