![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qmulz | GIF version |
Description: If ๐ด is rational, then some integer multiple of it is an integer. (Contributed by NM, 7-Nov-2008.) (Revised by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
qmulz | โข (๐ด โ โ โ โ๐ฅ โ โ (๐ด ยท ๐ฅ) โ โค) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elq 9624 | . 2 โข (๐ด โ โ โ โ๐ฆ โ โค โ๐ฅ โ โ ๐ด = (๐ฆ / ๐ฅ)) | |
2 | rexcom 2641 | . . 3 โข (โ๐ฆ โ โค โ๐ฅ โ โ ๐ด = (๐ฆ / ๐ฅ) โ โ๐ฅ โ โ โ๐ฆ โ โค ๐ด = (๐ฆ / ๐ฅ)) | |
3 | zcn 9260 | . . . . . . . . 9 โข (๐ฆ โ โค โ ๐ฆ โ โ) | |
4 | 3 | adantl 277 | . . . . . . . 8 โข ((๐ฅ โ โ โง ๐ฆ โ โค) โ ๐ฆ โ โ) |
5 | nncn 8929 | . . . . . . . . 9 โข (๐ฅ โ โ โ ๐ฅ โ โ) | |
6 | 5 | adantr 276 | . . . . . . . 8 โข ((๐ฅ โ โ โง ๐ฆ โ โค) โ ๐ฅ โ โ) |
7 | nnap0 8950 | . . . . . . . . 9 โข (๐ฅ โ โ โ ๐ฅ # 0) | |
8 | 7 | adantr 276 | . . . . . . . 8 โข ((๐ฅ โ โ โง ๐ฆ โ โค) โ ๐ฅ # 0) |
9 | 4, 6, 8 | divcanap1d 8750 | . . . . . . 7 โข ((๐ฅ โ โ โง ๐ฆ โ โค) โ ((๐ฆ / ๐ฅ) ยท ๐ฅ) = ๐ฆ) |
10 | simpr 110 | . . . . . . 7 โข ((๐ฅ โ โ โง ๐ฆ โ โค) โ ๐ฆ โ โค) | |
11 | 9, 10 | eqeltrd 2254 | . . . . . 6 โข ((๐ฅ โ โ โง ๐ฆ โ โค) โ ((๐ฆ / ๐ฅ) ยท ๐ฅ) โ โค) |
12 | oveq1 5884 | . . . . . . 7 โข (๐ด = (๐ฆ / ๐ฅ) โ (๐ด ยท ๐ฅ) = ((๐ฆ / ๐ฅ) ยท ๐ฅ)) | |
13 | 12 | eleq1d 2246 | . . . . . 6 โข (๐ด = (๐ฆ / ๐ฅ) โ ((๐ด ยท ๐ฅ) โ โค โ ((๐ฆ / ๐ฅ) ยท ๐ฅ) โ โค)) |
14 | 11, 13 | syl5ibrcom 157 | . . . . 5 โข ((๐ฅ โ โ โง ๐ฆ โ โค) โ (๐ด = (๐ฆ / ๐ฅ) โ (๐ด ยท ๐ฅ) โ โค)) |
15 | 14 | rexlimdva 2594 | . . . 4 โข (๐ฅ โ โ โ (โ๐ฆ โ โค ๐ด = (๐ฆ / ๐ฅ) โ (๐ด ยท ๐ฅ) โ โค)) |
16 | 15 | reximia 2572 | . . 3 โข (โ๐ฅ โ โ โ๐ฆ โ โค ๐ด = (๐ฆ / ๐ฅ) โ โ๐ฅ โ โ (๐ด ยท ๐ฅ) โ โค) |
17 | 2, 16 | sylbi 121 | . 2 โข (โ๐ฆ โ โค โ๐ฅ โ โ ๐ด = (๐ฆ / ๐ฅ) โ โ๐ฅ โ โ (๐ด ยท ๐ฅ) โ โค) |
18 | 1, 17 | sylbi 121 | 1 โข (๐ด โ โ โ โ๐ฅ โ โ (๐ด ยท ๐ฅ) โ โค) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 โง wa 104 = wceq 1353 โ wcel 2148 โwrex 2456 class class class wbr 4005 (class class class)co 5877 โcc 7811 0cc0 7813 ยท cmul 7818 # cap 8540 / cdiv 8631 โcn 8921 โคcz 9255 โcq 9621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-po 4298 df-iso 4299 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-z 9256 df-q 9622 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |