| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qmulz | GIF version | ||
| Description: If 𝐴 is rational, then some integer multiple of it is an integer. (Contributed by NM, 7-Nov-2008.) (Revised by Mario Carneiro, 22-Jul-2014.) |
| Ref | Expression |
|---|---|
| qmulz | ⊢ (𝐴 ∈ ℚ → ∃𝑥 ∈ ℕ (𝐴 · 𝑥) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq 9825 | . 2 ⊢ (𝐴 ∈ ℚ ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℕ 𝐴 = (𝑦 / 𝑥)) | |
| 2 | rexcom 2695 | . . 3 ⊢ (∃𝑦 ∈ ℤ ∃𝑥 ∈ ℕ 𝐴 = (𝑦 / 𝑥) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℤ 𝐴 = (𝑦 / 𝑥)) | |
| 3 | zcn 9459 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
| 4 | 3 | adantl 277 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℂ) |
| 5 | nncn 9126 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℂ) | |
| 6 | 5 | adantr 276 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℂ) |
| 7 | nnap0 9147 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕ → 𝑥 # 0) | |
| 8 | 7 | adantr 276 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → 𝑥 # 0) |
| 9 | 4, 6, 8 | divcanap1d 8946 | . . . . . . 7 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → ((𝑦 / 𝑥) · 𝑥) = 𝑦) |
| 10 | simpr 110 | . . . . . . 7 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℤ) | |
| 11 | 9, 10 | eqeltrd 2306 | . . . . . 6 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → ((𝑦 / 𝑥) · 𝑥) ∈ ℤ) |
| 12 | oveq1 6014 | . . . . . . 7 ⊢ (𝐴 = (𝑦 / 𝑥) → (𝐴 · 𝑥) = ((𝑦 / 𝑥) · 𝑥)) | |
| 13 | 12 | eleq1d 2298 | . . . . . 6 ⊢ (𝐴 = (𝑦 / 𝑥) → ((𝐴 · 𝑥) ∈ ℤ ↔ ((𝑦 / 𝑥) · 𝑥) ∈ ℤ)) |
| 14 | 11, 13 | syl5ibrcom 157 | . . . . 5 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → (𝐴 = (𝑦 / 𝑥) → (𝐴 · 𝑥) ∈ ℤ)) |
| 15 | 14 | rexlimdva 2648 | . . . 4 ⊢ (𝑥 ∈ ℕ → (∃𝑦 ∈ ℤ 𝐴 = (𝑦 / 𝑥) → (𝐴 · 𝑥) ∈ ℤ)) |
| 16 | 15 | reximia 2625 | . . 3 ⊢ (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℤ 𝐴 = (𝑦 / 𝑥) → ∃𝑥 ∈ ℕ (𝐴 · 𝑥) ∈ ℤ) |
| 17 | 2, 16 | sylbi 121 | . 2 ⊢ (∃𝑦 ∈ ℤ ∃𝑥 ∈ ℕ 𝐴 = (𝑦 / 𝑥) → ∃𝑥 ∈ ℕ (𝐴 · 𝑥) ∈ ℤ) |
| 18 | 1, 17 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℚ → ∃𝑥 ∈ ℕ (𝐴 · 𝑥) ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 class class class wbr 4083 (class class class)co 6007 ℂcc 8005 0cc0 8007 · cmul 8012 # cap 8736 / cdiv 8827 ℕcn 9118 ℤcz 9454 ℚcq 9822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-z 9455 df-q 9823 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |