ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin0pilem1 GIF version

Theorem sin0pilem1 14390
Description: Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
Assertion
Ref Expression
sin0pilem1 𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥))
Distinct variable group:   𝑥,𝑝

Proof of Theorem sin0pilem1
StepHypRef Expression
1 cosz12 14389 . 2 𝑝 ∈ (1(,)2)(cos‘𝑝) = 0
2 simpr 110 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) → (cos‘𝑝) = 0)
3 2re 8992 . . . . . . . . . . . 12 2 ∈ ℝ
43a1i 9 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 2 ∈ ℝ)
5 elioore 9915 . . . . . . . . . . . 12 (𝑝 ∈ (1(,)2) → 𝑝 ∈ ℝ)
65ad2antrr 488 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑝 ∈ ℝ)
74, 6remulcld 7991 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · 𝑝) ∈ ℝ)
8 elioore 9915 . . . . . . . . . . 11 (𝑥 ∈ (𝑝(,)(2 · 𝑝)) → 𝑥 ∈ ℝ)
98adantl 277 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑥 ∈ ℝ)
107, 9resubcld 8341 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) ∈ ℝ)
11 eliooord 9931 . . . . . . . . . . . 12 (𝑥 ∈ (𝑝(,)(2 · 𝑝)) → (𝑝 < 𝑥𝑥 < (2 · 𝑝)))
1211simprd 114 . . . . . . . . . . 11 (𝑥 ∈ (𝑝(,)(2 · 𝑝)) → 𝑥 < (2 · 𝑝))
1312adantl 277 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑥 < (2 · 𝑝))
149, 7posdifd 8492 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (𝑥 < (2 · 𝑝) ↔ 0 < ((2 · 𝑝) − 𝑥)))
1513, 14mpbid 147 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 0 < ((2 · 𝑝) − 𝑥))
1611simpld 112 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑝(,)(2 · 𝑝)) → 𝑝 < 𝑥)
1716adantl 277 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑝 < 𝑥)
186, 9, 7, 17ltsub2dd 8518 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) < ((2 · 𝑝) − 𝑝))
196recnd 7989 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑝 ∈ ℂ)
2019mulid2d 7979 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (1 · 𝑝) = 𝑝)
2120oveq2d 5894 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − (1 · 𝑝)) = ((2 · 𝑝) − 𝑝))
2218, 21breqtrrd 4033 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) < ((2 · 𝑝) − (1 · 𝑝)))
234recnd 7989 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 2 ∈ ℂ)
24 1cnd 7976 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 1 ∈ ℂ)
2523, 24, 19subdird 8375 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 − 1) · 𝑝) = ((2 · 𝑝) − (1 · 𝑝)))
2622, 25breqtrrd 4033 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) < ((2 − 1) · 𝑝))
27 2m1e1 9040 . . . . . . . . . . . . . 14 (2 − 1) = 1
2827oveq1i 5888 . . . . . . . . . . . . 13 ((2 − 1) · 𝑝) = (1 · 𝑝)
2928, 20eqtrid 2222 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 − 1) · 𝑝) = 𝑝)
3026, 29breqtrd 4031 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) < 𝑝)
31 eliooord 9931 . . . . . . . . . . . . 13 (𝑝 ∈ (1(,)2) → (1 < 𝑝𝑝 < 2))
3231simprd 114 . . . . . . . . . . . 12 (𝑝 ∈ (1(,)2) → 𝑝 < 2)
3332ad2antrr 488 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑝 < 2)
3410, 6, 4, 30, 33lttrd 8086 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) < 2)
3510, 4, 34ltled 8079 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) ≤ 2)
36 0xr 8007 . . . . . . . . . 10 0 ∈ ℝ*
37 elioc2 9939 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (((2 · 𝑝) − 𝑥) ∈ (0(,]2) ↔ (((2 · 𝑝) − 𝑥) ∈ ℝ ∧ 0 < ((2 · 𝑝) − 𝑥) ∧ ((2 · 𝑝) − 𝑥) ≤ 2)))
3836, 3, 37mp2an 426 . . . . . . . . 9 (((2 · 𝑝) − 𝑥) ∈ (0(,]2) ↔ (((2 · 𝑝) − 𝑥) ∈ ℝ ∧ 0 < ((2 · 𝑝) − 𝑥) ∧ ((2 · 𝑝) − 𝑥) ≤ 2))
3910, 15, 35, 38syl3anbrc 1181 . . . . . . . 8 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) ∈ (0(,]2))
40 sin02gt0 11774 . . . . . . . 8 (((2 · 𝑝) − 𝑥) ∈ (0(,]2) → 0 < (sin‘((2 · 𝑝) − 𝑥)))
4139, 40syl 14 . . . . . . 7 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 0 < (sin‘((2 · 𝑝) − 𝑥)))
427recnd 7989 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · 𝑝) ∈ ℂ)
439recnd 7989 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑥 ∈ ℂ)
4442, 43subcld 8271 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) ∈ ℂ)
45 sinsub 11751 . . . . . . . . . . . 12 (((2 · 𝑝) ∈ ℂ ∧ ((2 · 𝑝) − 𝑥) ∈ ℂ) → (sin‘((2 · 𝑝) − ((2 · 𝑝) − 𝑥))) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − ((cos‘(2 · 𝑝)) · (sin‘((2 · 𝑝) − 𝑥)))))
4642, 44, 45syl2anc 411 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘((2 · 𝑝) − ((2 · 𝑝) − 𝑥))) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − ((cos‘(2 · 𝑝)) · (sin‘((2 · 𝑝) − 𝑥)))))
4742, 43nncand 8276 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − ((2 · 𝑝) − 𝑥)) = 𝑥)
4847fveq2d 5521 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘((2 · 𝑝) − ((2 · 𝑝) − 𝑥))) = (sin‘𝑥))
49 cos2t 11761 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℂ → (cos‘(2 · 𝑝)) = ((2 · ((cos‘𝑝)↑2)) − 1))
5019, 49syl 14 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (cos‘(2 · 𝑝)) = ((2 · ((cos‘𝑝)↑2)) − 1))
51 simplr 528 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (cos‘𝑝) = 0)
5251sq0id 10616 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((cos‘𝑝)↑2) = 0)
5352oveq2d 5894 . . . . . . . . . . . . . . . . . 18 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · ((cos‘𝑝)↑2)) = (2 · 0))
54 2t0e0 9081 . . . . . . . . . . . . . . . . . 18 (2 · 0) = 0
5553, 54eqtrdi 2226 . . . . . . . . . . . . . . . . 17 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · ((cos‘𝑝)↑2)) = 0)
5655oveq1d 5893 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · ((cos‘𝑝)↑2)) − 1) = (0 − 1))
57 df-neg 8134 . . . . . . . . . . . . . . . 16 -1 = (0 − 1)
5856, 57eqtr4di 2228 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · ((cos‘𝑝)↑2)) − 1) = -1)
5950, 58eqtrd 2210 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (cos‘(2 · 𝑝)) = -1)
6059oveq1d 5893 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((cos‘(2 · 𝑝)) · (sin‘((2 · 𝑝) − 𝑥))) = (-1 · (sin‘((2 · 𝑝) − 𝑥))))
6144sincld 11721 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘((2 · 𝑝) − 𝑥)) ∈ ℂ)
6261mulm1d 8370 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (-1 · (sin‘((2 · 𝑝) − 𝑥))) = -(sin‘((2 · 𝑝) − 𝑥)))
6360, 62eqtrd 2210 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((cos‘(2 · 𝑝)) · (sin‘((2 · 𝑝) − 𝑥))) = -(sin‘((2 · 𝑝) − 𝑥)))
6463oveq2d 5894 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − ((cos‘(2 · 𝑝)) · (sin‘((2 · 𝑝) − 𝑥)))) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − -(sin‘((2 · 𝑝) − 𝑥))))
6546, 48, 643eqtr3d 2218 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘𝑥) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − -(sin‘((2 · 𝑝) − 𝑥))))
6642sincld 11721 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘(2 · 𝑝)) ∈ ℂ)
6744coscld 11722 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (cos‘((2 · 𝑝) − 𝑥)) ∈ ℂ)
6866, 67mulcld 7981 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) ∈ ℂ)
6968, 61subnegd 8278 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − -(sin‘((2 · 𝑝) − 𝑥))) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) + (sin‘((2 · 𝑝) − 𝑥))))
7065, 69eqtrd 2210 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘𝑥) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) + (sin‘((2 · 𝑝) − 𝑥))))
71 sin2t 11760 . . . . . . . . . . . . . 14 (𝑝 ∈ ℂ → (sin‘(2 · 𝑝)) = (2 · ((sin‘𝑝) · (cos‘𝑝))))
7219, 71syl 14 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘(2 · 𝑝)) = (2 · ((sin‘𝑝) · (cos‘𝑝))))
7351oveq2d 5894 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘𝑝) · (cos‘𝑝)) = ((sin‘𝑝) · 0))
7419sincld 11721 . . . . . . . . . . . . . . . . 17 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘𝑝) ∈ ℂ)
7574mul01d 8353 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘𝑝) · 0) = 0)
7673, 75eqtrd 2210 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘𝑝) · (cos‘𝑝)) = 0)
7776oveq2d 5894 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · ((sin‘𝑝) · (cos‘𝑝))) = (2 · 0))
7877, 54eqtrdi 2226 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · ((sin‘𝑝) · (cos‘𝑝))) = 0)
7972, 78eqtrd 2210 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘(2 · 𝑝)) = 0)
8079oveq1d 5893 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) = (0 · (cos‘((2 · 𝑝) − 𝑥))))
8167mul02d 8352 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (0 · (cos‘((2 · 𝑝) − 𝑥))) = 0)
8280, 81eqtrd 2210 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) = 0)
8382oveq1d 5893 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) + (sin‘((2 · 𝑝) − 𝑥))) = (0 + (sin‘((2 · 𝑝) − 𝑥))))
8470, 83eqtrd 2210 . . . . . . . 8 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘𝑥) = (0 + (sin‘((2 · 𝑝) − 𝑥))))
8561addid2d 8110 . . . . . . . 8 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (0 + (sin‘((2 · 𝑝) − 𝑥))) = (sin‘((2 · 𝑝) − 𝑥)))
8684, 85eqtrd 2210 . . . . . . 7 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘𝑥) = (sin‘((2 · 𝑝) − 𝑥)))
8741, 86breqtrrd 4033 . . . . . 6 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 0 < (sin‘𝑥))
8887ralrimiva 2550 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) → ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥))
892, 88jca 306 . . . 4 ((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) → ((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥)))
9089ex 115 . . 3 (𝑝 ∈ (1(,)2) → ((cos‘𝑝) = 0 → ((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥))))
9190reximia 2572 . 2 (∃𝑝 ∈ (1(,)2)(cos‘𝑝) = 0 → ∃𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥)))
921, 91ax-mp 5 1 𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  wral 2455  wrex 2456   class class class wbr 4005  cfv 5218  (class class class)co 5878  cc 7812  cr 7813  0cc0 7814  1c1 7815   + caddc 7817   · cmul 7819  *cxr 7994   < clt 7995  cle 7996  cmin 8131  -cneg 8132  2c2 8973  (,)cioo 9891  (,]cioc 9892  cexp 10522  sincsin 11655  cosccos 11656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934  ax-pre-suploc 7935  ax-addf 7936  ax-mulf 7937
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-disj 3983  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-of 6086  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-frec 6395  df-1o 6420  df-oadd 6424  df-er 6538  df-map 6653  df-pm 6654  df-en 6744  df-dom 6745  df-fin 6746  df-sup 6986  df-inf 6987  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-5 8984  df-6 8985  df-7 8986  df-8 8987  df-9 8988  df-n0 9180  df-z 9257  df-uz 9532  df-q 9623  df-rp 9657  df-xneg 9775  df-xadd 9776  df-ioo 9895  df-ioc 9896  df-ico 9897  df-icc 9898  df-fz 10012  df-fzo 10146  df-seqfrec 10449  df-exp 10523  df-fac 10709  df-bc 10731  df-ihash 10759  df-shft 10827  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-clim 11290  df-sumdc 11365  df-ef 11659  df-sin 11661  df-cos 11662  df-rest 12696  df-topgen 12715  df-psmet 13621  df-xmet 13622  df-met 13623  df-bl 13624  df-mopn 13625  df-top 13686  df-topon 13699  df-bases 13731  df-ntr 13784  df-cn 13876  df-cnp 13877  df-tx 13941  df-cncf 14246  df-limced 14313  df-dvap 14314
This theorem is referenced by:  sin0pilem2  14391
  Copyright terms: Public domain W3C validator