ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin0pilem1 GIF version

Theorem sin0pilem1 15368
Description: Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
Assertion
Ref Expression
sin0pilem1 𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥))
Distinct variable group:   𝑥,𝑝

Proof of Theorem sin0pilem1
StepHypRef Expression
1 cosz12 15367 . 2 𝑝 ∈ (1(,)2)(cos‘𝑝) = 0
2 simpr 110 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) → (cos‘𝑝) = 0)
3 2re 9141 . . . . . . . . . . . 12 2 ∈ ℝ
43a1i 9 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 2 ∈ ℝ)
5 elioore 10069 . . . . . . . . . . . 12 (𝑝 ∈ (1(,)2) → 𝑝 ∈ ℝ)
65ad2antrr 488 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑝 ∈ ℝ)
74, 6remulcld 8138 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · 𝑝) ∈ ℝ)
8 elioore 10069 . . . . . . . . . . 11 (𝑥 ∈ (𝑝(,)(2 · 𝑝)) → 𝑥 ∈ ℝ)
98adantl 277 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑥 ∈ ℝ)
107, 9resubcld 8488 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) ∈ ℝ)
11 eliooord 10085 . . . . . . . . . . . 12 (𝑥 ∈ (𝑝(,)(2 · 𝑝)) → (𝑝 < 𝑥𝑥 < (2 · 𝑝)))
1211simprd 114 . . . . . . . . . . 11 (𝑥 ∈ (𝑝(,)(2 · 𝑝)) → 𝑥 < (2 · 𝑝))
1312adantl 277 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑥 < (2 · 𝑝))
149, 7posdifd 8640 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (𝑥 < (2 · 𝑝) ↔ 0 < ((2 · 𝑝) − 𝑥)))
1513, 14mpbid 147 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 0 < ((2 · 𝑝) − 𝑥))
1611simpld 112 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑝(,)(2 · 𝑝)) → 𝑝 < 𝑥)
1716adantl 277 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑝 < 𝑥)
186, 9, 7, 17ltsub2dd 8666 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) < ((2 · 𝑝) − 𝑝))
196recnd 8136 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑝 ∈ ℂ)
2019mulid2d 8126 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (1 · 𝑝) = 𝑝)
2120oveq2d 5983 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − (1 · 𝑝)) = ((2 · 𝑝) − 𝑝))
2218, 21breqtrrd 4087 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) < ((2 · 𝑝) − (1 · 𝑝)))
234recnd 8136 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 2 ∈ ℂ)
24 1cnd 8123 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 1 ∈ ℂ)
2523, 24, 19subdird 8522 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 − 1) · 𝑝) = ((2 · 𝑝) − (1 · 𝑝)))
2622, 25breqtrrd 4087 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) < ((2 − 1) · 𝑝))
27 2m1e1 9189 . . . . . . . . . . . . . 14 (2 − 1) = 1
2827oveq1i 5977 . . . . . . . . . . . . 13 ((2 − 1) · 𝑝) = (1 · 𝑝)
2928, 20eqtrid 2252 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 − 1) · 𝑝) = 𝑝)
3026, 29breqtrd 4085 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) < 𝑝)
31 eliooord 10085 . . . . . . . . . . . . 13 (𝑝 ∈ (1(,)2) → (1 < 𝑝𝑝 < 2))
3231simprd 114 . . . . . . . . . . . 12 (𝑝 ∈ (1(,)2) → 𝑝 < 2)
3332ad2antrr 488 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑝 < 2)
3410, 6, 4, 30, 33lttrd 8233 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) < 2)
3510, 4, 34ltled 8226 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) ≤ 2)
36 0xr 8154 . . . . . . . . . 10 0 ∈ ℝ*
37 elioc2 10093 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (((2 · 𝑝) − 𝑥) ∈ (0(,]2) ↔ (((2 · 𝑝) − 𝑥) ∈ ℝ ∧ 0 < ((2 · 𝑝) − 𝑥) ∧ ((2 · 𝑝) − 𝑥) ≤ 2)))
3836, 3, 37mp2an 426 . . . . . . . . 9 (((2 · 𝑝) − 𝑥) ∈ (0(,]2) ↔ (((2 · 𝑝) − 𝑥) ∈ ℝ ∧ 0 < ((2 · 𝑝) − 𝑥) ∧ ((2 · 𝑝) − 𝑥) ≤ 2))
3910, 15, 35, 38syl3anbrc 1184 . . . . . . . 8 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) ∈ (0(,]2))
40 sin02gt0 12190 . . . . . . . 8 (((2 · 𝑝) − 𝑥) ∈ (0(,]2) → 0 < (sin‘((2 · 𝑝) − 𝑥)))
4139, 40syl 14 . . . . . . 7 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 0 < (sin‘((2 · 𝑝) − 𝑥)))
427recnd 8136 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · 𝑝) ∈ ℂ)
439recnd 8136 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑥 ∈ ℂ)
4442, 43subcld 8418 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) ∈ ℂ)
45 sinsub 12166 . . . . . . . . . . . 12 (((2 · 𝑝) ∈ ℂ ∧ ((2 · 𝑝) − 𝑥) ∈ ℂ) → (sin‘((2 · 𝑝) − ((2 · 𝑝) − 𝑥))) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − ((cos‘(2 · 𝑝)) · (sin‘((2 · 𝑝) − 𝑥)))))
4642, 44, 45syl2anc 411 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘((2 · 𝑝) − ((2 · 𝑝) − 𝑥))) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − ((cos‘(2 · 𝑝)) · (sin‘((2 · 𝑝) − 𝑥)))))
4742, 43nncand 8423 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − ((2 · 𝑝) − 𝑥)) = 𝑥)
4847fveq2d 5603 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘((2 · 𝑝) − ((2 · 𝑝) − 𝑥))) = (sin‘𝑥))
49 cos2t 12176 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℂ → (cos‘(2 · 𝑝)) = ((2 · ((cos‘𝑝)↑2)) − 1))
5019, 49syl 14 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (cos‘(2 · 𝑝)) = ((2 · ((cos‘𝑝)↑2)) − 1))
51 simplr 528 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (cos‘𝑝) = 0)
5251sq0id 10814 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((cos‘𝑝)↑2) = 0)
5352oveq2d 5983 . . . . . . . . . . . . . . . . . 18 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · ((cos‘𝑝)↑2)) = (2 · 0))
54 2t0e0 9231 . . . . . . . . . . . . . . . . . 18 (2 · 0) = 0
5553, 54eqtrdi 2256 . . . . . . . . . . . . . . . . 17 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · ((cos‘𝑝)↑2)) = 0)
5655oveq1d 5982 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · ((cos‘𝑝)↑2)) − 1) = (0 − 1))
57 df-neg 8281 . . . . . . . . . . . . . . . 16 -1 = (0 − 1)
5856, 57eqtr4di 2258 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · ((cos‘𝑝)↑2)) − 1) = -1)
5950, 58eqtrd 2240 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (cos‘(2 · 𝑝)) = -1)
6059oveq1d 5982 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((cos‘(2 · 𝑝)) · (sin‘((2 · 𝑝) − 𝑥))) = (-1 · (sin‘((2 · 𝑝) − 𝑥))))
6144sincld 12136 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘((2 · 𝑝) − 𝑥)) ∈ ℂ)
6261mulm1d 8517 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (-1 · (sin‘((2 · 𝑝) − 𝑥))) = -(sin‘((2 · 𝑝) − 𝑥)))
6360, 62eqtrd 2240 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((cos‘(2 · 𝑝)) · (sin‘((2 · 𝑝) − 𝑥))) = -(sin‘((2 · 𝑝) − 𝑥)))
6463oveq2d 5983 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − ((cos‘(2 · 𝑝)) · (sin‘((2 · 𝑝) − 𝑥)))) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − -(sin‘((2 · 𝑝) − 𝑥))))
6546, 48, 643eqtr3d 2248 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘𝑥) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − -(sin‘((2 · 𝑝) − 𝑥))))
6642sincld 12136 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘(2 · 𝑝)) ∈ ℂ)
6744coscld 12137 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (cos‘((2 · 𝑝) − 𝑥)) ∈ ℂ)
6866, 67mulcld 8128 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) ∈ ℂ)
6968, 61subnegd 8425 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − -(sin‘((2 · 𝑝) − 𝑥))) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) + (sin‘((2 · 𝑝) − 𝑥))))
7065, 69eqtrd 2240 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘𝑥) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) + (sin‘((2 · 𝑝) − 𝑥))))
71 sin2t 12175 . . . . . . . . . . . . . 14 (𝑝 ∈ ℂ → (sin‘(2 · 𝑝)) = (2 · ((sin‘𝑝) · (cos‘𝑝))))
7219, 71syl 14 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘(2 · 𝑝)) = (2 · ((sin‘𝑝) · (cos‘𝑝))))
7351oveq2d 5983 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘𝑝) · (cos‘𝑝)) = ((sin‘𝑝) · 0))
7419sincld 12136 . . . . . . . . . . . . . . . . 17 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘𝑝) ∈ ℂ)
7574mul01d 8500 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘𝑝) · 0) = 0)
7673, 75eqtrd 2240 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘𝑝) · (cos‘𝑝)) = 0)
7776oveq2d 5983 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · ((sin‘𝑝) · (cos‘𝑝))) = (2 · 0))
7877, 54eqtrdi 2256 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · ((sin‘𝑝) · (cos‘𝑝))) = 0)
7972, 78eqtrd 2240 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘(2 · 𝑝)) = 0)
8079oveq1d 5982 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) = (0 · (cos‘((2 · 𝑝) − 𝑥))))
8167mul02d 8499 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (0 · (cos‘((2 · 𝑝) − 𝑥))) = 0)
8280, 81eqtrd 2240 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) = 0)
8382oveq1d 5982 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) + (sin‘((2 · 𝑝) − 𝑥))) = (0 + (sin‘((2 · 𝑝) − 𝑥))))
8470, 83eqtrd 2240 . . . . . . . 8 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘𝑥) = (0 + (sin‘((2 · 𝑝) − 𝑥))))
8561addlidd 8257 . . . . . . . 8 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (0 + (sin‘((2 · 𝑝) − 𝑥))) = (sin‘((2 · 𝑝) − 𝑥)))
8684, 85eqtrd 2240 . . . . . . 7 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘𝑥) = (sin‘((2 · 𝑝) − 𝑥)))
8741, 86breqtrrd 4087 . . . . . 6 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 0 < (sin‘𝑥))
8887ralrimiva 2581 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) → ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥))
892, 88jca 306 . . . 4 ((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) → ((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥)))
9089ex 115 . . 3 (𝑝 ∈ (1(,)2) → ((cos‘𝑝) = 0 → ((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥))))
9190reximia 2603 . 2 (∃𝑝 ∈ (1(,)2)(cos‘𝑝) = 0 → ∃𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥)))
921, 91ax-mp 5 1 𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2178  wral 2486  wrex 2487   class class class wbr 4059  cfv 5290  (class class class)co 5967  cc 7958  cr 7959  0cc0 7960  1c1 7961   + caddc 7963   · cmul 7965  *cxr 8141   < clt 8142  cle 8143  cmin 8278  -cneg 8279  2c2 9122  (,)cioo 10045  (,]cioc 10046  cexp 10720  sincsin 12070  cosccos 12071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080  ax-pre-suploc 8081  ax-addf 8082  ax-mulf 8083
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-disj 4036  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-of 6181  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-map 6760  df-pm 6761  df-en 6851  df-dom 6852  df-fin 6853  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-9 9137  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-xneg 9929  df-xadd 9930  df-ioo 10049  df-ioc 10050  df-ico 10051  df-icc 10052  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-fac 10908  df-bc 10930  df-ihash 10958  df-shft 11241  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-sumdc 11780  df-ef 12074  df-sin 12076  df-cos 12077  df-rest 13188  df-topgen 13207  df-psmet 14420  df-xmet 14421  df-met 14422  df-bl 14423  df-mopn 14424  df-top 14585  df-topon 14598  df-bases 14630  df-ntr 14683  df-cn 14775  df-cnp 14776  df-tx 14840  df-cncf 15158  df-limced 15243  df-dvap 15244
This theorem is referenced by:  sin0pilem2  15369
  Copyright terms: Public domain W3C validator