ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin0pilem1 GIF version

Theorem sin0pilem1 13049
Description: Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
Assertion
Ref Expression
sin0pilem1 𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥))
Distinct variable group:   𝑥,𝑝

Proof of Theorem sin0pilem1
StepHypRef Expression
1 cosz12 13048 . 2 𝑝 ∈ (1(,)2)(cos‘𝑝) = 0
2 simpr 109 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) → (cos‘𝑝) = 0)
3 2re 8882 . . . . . . . . . . . 12 2 ∈ ℝ
43a1i 9 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 2 ∈ ℝ)
5 elioore 9794 . . . . . . . . . . . 12 (𝑝 ∈ (1(,)2) → 𝑝 ∈ ℝ)
65ad2antrr 480 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑝 ∈ ℝ)
74, 6remulcld 7887 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · 𝑝) ∈ ℝ)
8 elioore 9794 . . . . . . . . . . 11 (𝑥 ∈ (𝑝(,)(2 · 𝑝)) → 𝑥 ∈ ℝ)
98adantl 275 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑥 ∈ ℝ)
107, 9resubcld 8235 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) ∈ ℝ)
11 eliooord 9810 . . . . . . . . . . . 12 (𝑥 ∈ (𝑝(,)(2 · 𝑝)) → (𝑝 < 𝑥𝑥 < (2 · 𝑝)))
1211simprd 113 . . . . . . . . . . 11 (𝑥 ∈ (𝑝(,)(2 · 𝑝)) → 𝑥 < (2 · 𝑝))
1312adantl 275 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑥 < (2 · 𝑝))
149, 7posdifd 8386 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (𝑥 < (2 · 𝑝) ↔ 0 < ((2 · 𝑝) − 𝑥)))
1513, 14mpbid 146 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 0 < ((2 · 𝑝) − 𝑥))
1611simpld 111 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑝(,)(2 · 𝑝)) → 𝑝 < 𝑥)
1716adantl 275 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑝 < 𝑥)
186, 9, 7, 17ltsub2dd 8412 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) < ((2 · 𝑝) − 𝑝))
196recnd 7885 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑝 ∈ ℂ)
2019mulid2d 7875 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (1 · 𝑝) = 𝑝)
2120oveq2d 5830 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − (1 · 𝑝)) = ((2 · 𝑝) − 𝑝))
2218, 21breqtrrd 3988 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) < ((2 · 𝑝) − (1 · 𝑝)))
234recnd 7885 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 2 ∈ ℂ)
24 1cnd 7873 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 1 ∈ ℂ)
2523, 24, 19subdird 8269 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 − 1) · 𝑝) = ((2 · 𝑝) − (1 · 𝑝)))
2622, 25breqtrrd 3988 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) < ((2 − 1) · 𝑝))
27 2m1e1 8930 . . . . . . . . . . . . . 14 (2 − 1) = 1
2827oveq1i 5824 . . . . . . . . . . . . 13 ((2 − 1) · 𝑝) = (1 · 𝑝)
2928, 20syl5eq 2199 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 − 1) · 𝑝) = 𝑝)
3026, 29breqtrd 3986 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) < 𝑝)
31 eliooord 9810 . . . . . . . . . . . . 13 (𝑝 ∈ (1(,)2) → (1 < 𝑝𝑝 < 2))
3231simprd 113 . . . . . . . . . . . 12 (𝑝 ∈ (1(,)2) → 𝑝 < 2)
3332ad2antrr 480 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑝 < 2)
3410, 6, 4, 30, 33lttrd 7980 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) < 2)
3510, 4, 34ltled 7973 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) ≤ 2)
36 0xr 7903 . . . . . . . . . 10 0 ∈ ℝ*
37 elioc2 9818 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (((2 · 𝑝) − 𝑥) ∈ (0(,]2) ↔ (((2 · 𝑝) − 𝑥) ∈ ℝ ∧ 0 < ((2 · 𝑝) − 𝑥) ∧ ((2 · 𝑝) − 𝑥) ≤ 2)))
3836, 3, 37mp2an 423 . . . . . . . . 9 (((2 · 𝑝) − 𝑥) ∈ (0(,]2) ↔ (((2 · 𝑝) − 𝑥) ∈ ℝ ∧ 0 < ((2 · 𝑝) − 𝑥) ∧ ((2 · 𝑝) − 𝑥) ≤ 2))
3910, 15, 35, 38syl3anbrc 1166 . . . . . . . 8 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) ∈ (0(,]2))
40 sin02gt0 11637 . . . . . . . 8 (((2 · 𝑝) − 𝑥) ∈ (0(,]2) → 0 < (sin‘((2 · 𝑝) − 𝑥)))
4139, 40syl 14 . . . . . . 7 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 0 < (sin‘((2 · 𝑝) − 𝑥)))
427recnd 7885 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · 𝑝) ∈ ℂ)
439recnd 7885 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑥 ∈ ℂ)
4442, 43subcld 8165 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) ∈ ℂ)
45 sinsub 11614 . . . . . . . . . . . 12 (((2 · 𝑝) ∈ ℂ ∧ ((2 · 𝑝) − 𝑥) ∈ ℂ) → (sin‘((2 · 𝑝) − ((2 · 𝑝) − 𝑥))) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − ((cos‘(2 · 𝑝)) · (sin‘((2 · 𝑝) − 𝑥)))))
4642, 44, 45syl2anc 409 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘((2 · 𝑝) − ((2 · 𝑝) − 𝑥))) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − ((cos‘(2 · 𝑝)) · (sin‘((2 · 𝑝) − 𝑥)))))
4742, 43nncand 8170 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − ((2 · 𝑝) − 𝑥)) = 𝑥)
4847fveq2d 5465 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘((2 · 𝑝) − ((2 · 𝑝) − 𝑥))) = (sin‘𝑥))
49 cos2t 11624 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℂ → (cos‘(2 · 𝑝)) = ((2 · ((cos‘𝑝)↑2)) − 1))
5019, 49syl 14 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (cos‘(2 · 𝑝)) = ((2 · ((cos‘𝑝)↑2)) − 1))
51 simplr 520 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (cos‘𝑝) = 0)
5251sq0id 10489 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((cos‘𝑝)↑2) = 0)
5352oveq2d 5830 . . . . . . . . . . . . . . . . . 18 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · ((cos‘𝑝)↑2)) = (2 · 0))
54 2t0e0 8971 . . . . . . . . . . . . . . . . . 18 (2 · 0) = 0
5553, 54eqtrdi 2203 . . . . . . . . . . . . . . . . 17 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · ((cos‘𝑝)↑2)) = 0)
5655oveq1d 5829 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · ((cos‘𝑝)↑2)) − 1) = (0 − 1))
57 df-neg 8028 . . . . . . . . . . . . . . . 16 -1 = (0 − 1)
5856, 57eqtr4di 2205 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · ((cos‘𝑝)↑2)) − 1) = -1)
5950, 58eqtrd 2187 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (cos‘(2 · 𝑝)) = -1)
6059oveq1d 5829 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((cos‘(2 · 𝑝)) · (sin‘((2 · 𝑝) − 𝑥))) = (-1 · (sin‘((2 · 𝑝) − 𝑥))))
6144sincld 11584 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘((2 · 𝑝) − 𝑥)) ∈ ℂ)
6261mulm1d 8264 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (-1 · (sin‘((2 · 𝑝) − 𝑥))) = -(sin‘((2 · 𝑝) − 𝑥)))
6360, 62eqtrd 2187 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((cos‘(2 · 𝑝)) · (sin‘((2 · 𝑝) − 𝑥))) = -(sin‘((2 · 𝑝) − 𝑥)))
6463oveq2d 5830 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − ((cos‘(2 · 𝑝)) · (sin‘((2 · 𝑝) − 𝑥)))) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − -(sin‘((2 · 𝑝) − 𝑥))))
6546, 48, 643eqtr3d 2195 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘𝑥) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − -(sin‘((2 · 𝑝) − 𝑥))))
6642sincld 11584 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘(2 · 𝑝)) ∈ ℂ)
6744coscld 11585 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (cos‘((2 · 𝑝) − 𝑥)) ∈ ℂ)
6866, 67mulcld 7877 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) ∈ ℂ)
6968, 61subnegd 8172 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − -(sin‘((2 · 𝑝) − 𝑥))) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) + (sin‘((2 · 𝑝) − 𝑥))))
7065, 69eqtrd 2187 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘𝑥) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) + (sin‘((2 · 𝑝) − 𝑥))))
71 sin2t 11623 . . . . . . . . . . . . . 14 (𝑝 ∈ ℂ → (sin‘(2 · 𝑝)) = (2 · ((sin‘𝑝) · (cos‘𝑝))))
7219, 71syl 14 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘(2 · 𝑝)) = (2 · ((sin‘𝑝) · (cos‘𝑝))))
7351oveq2d 5830 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘𝑝) · (cos‘𝑝)) = ((sin‘𝑝) · 0))
7419sincld 11584 . . . . . . . . . . . . . . . . 17 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘𝑝) ∈ ℂ)
7574mul01d 8247 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘𝑝) · 0) = 0)
7673, 75eqtrd 2187 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘𝑝) · (cos‘𝑝)) = 0)
7776oveq2d 5830 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · ((sin‘𝑝) · (cos‘𝑝))) = (2 · 0))
7877, 54eqtrdi 2203 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · ((sin‘𝑝) · (cos‘𝑝))) = 0)
7972, 78eqtrd 2187 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘(2 · 𝑝)) = 0)
8079oveq1d 5829 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) = (0 · (cos‘((2 · 𝑝) − 𝑥))))
8167mul02d 8246 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (0 · (cos‘((2 · 𝑝) − 𝑥))) = 0)
8280, 81eqtrd 2187 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) = 0)
8382oveq1d 5829 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) + (sin‘((2 · 𝑝) − 𝑥))) = (0 + (sin‘((2 · 𝑝) − 𝑥))))
8470, 83eqtrd 2187 . . . . . . . 8 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘𝑥) = (0 + (sin‘((2 · 𝑝) − 𝑥))))
8561addid2d 8004 . . . . . . . 8 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (0 + (sin‘((2 · 𝑝) − 𝑥))) = (sin‘((2 · 𝑝) − 𝑥)))
8684, 85eqtrd 2187 . . . . . . 7 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘𝑥) = (sin‘((2 · 𝑝) − 𝑥)))
8741, 86breqtrrd 3988 . . . . . 6 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 0 < (sin‘𝑥))
8887ralrimiva 2527 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) → ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥))
892, 88jca 304 . . . 4 ((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) → ((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥)))
9089ex 114 . . 3 (𝑝 ∈ (1(,)2) → ((cos‘𝑝) = 0 → ((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥))))
9190reximia 2549 . 2 (∃𝑝 ∈ (1(,)2)(cos‘𝑝) = 0 → ∃𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥)))
921, 91ax-mp 5 1 𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  w3a 963   = wceq 1332  wcel 2125  wral 2432  wrex 2433   class class class wbr 3961  cfv 5163  (class class class)co 5814  cc 7709  cr 7710  0cc0 7711  1c1 7712   + caddc 7714   · cmul 7716  *cxr 7890   < clt 7891  cle 7892  cmin 8025  -cneg 8026  2c2 8863  (,)cioo 9770  (,]cioc 9771  cexp 10396  sincsin 11518  cosccos 11519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830  ax-caucvg 7831  ax-pre-suploc 7832  ax-addf 7833  ax-mulf 7834
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-disj 3939  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-isom 5172  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-of 6022  df-1st 6078  df-2nd 6079  df-recs 6242  df-irdg 6307  df-frec 6328  df-1o 6353  df-oadd 6357  df-er 6469  df-map 6584  df-pm 6585  df-en 6675  df-dom 6676  df-fin 6677  df-sup 6916  df-inf 6917  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-5 8874  df-6 8875  df-7 8876  df-8 8877  df-9 8878  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539  df-xneg 9657  df-xadd 9658  df-ioo 9774  df-ioc 9775  df-ico 9776  df-icc 9777  df-fz 9891  df-fzo 10020  df-seqfrec 10323  df-exp 10397  df-fac 10577  df-bc 10599  df-ihash 10627  df-shft 10692  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876  df-clim 11153  df-sumdc 11228  df-ef 11522  df-sin 11524  df-cos 11525  df-rest 12300  df-topgen 12319  df-psmet 12334  df-xmet 12335  df-met 12336  df-bl 12337  df-mopn 12338  df-top 12343  df-topon 12356  df-bases 12388  df-ntr 12443  df-cn 12535  df-cnp 12536  df-tx 12600  df-cncf 12905  df-limced 12972  df-dvap 12973
This theorem is referenced by:  sin0pilem2  13050
  Copyright terms: Public domain W3C validator