ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin0pilem1 GIF version

Theorem sin0pilem1 12862
Description: Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
Assertion
Ref Expression
sin0pilem1 𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥))
Distinct variable group:   𝑥,𝑝

Proof of Theorem sin0pilem1
StepHypRef Expression
1 cosz12 12861 . 2 𝑝 ∈ (1(,)2)(cos‘𝑝) = 0
2 simpr 109 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) → (cos‘𝑝) = 0)
3 2re 8790 . . . . . . . . . . . 12 2 ∈ ℝ
43a1i 9 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 2 ∈ ℝ)
5 elioore 9695 . . . . . . . . . . . 12 (𝑝 ∈ (1(,)2) → 𝑝 ∈ ℝ)
65ad2antrr 479 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑝 ∈ ℝ)
74, 6remulcld 7796 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · 𝑝) ∈ ℝ)
8 elioore 9695 . . . . . . . . . . 11 (𝑥 ∈ (𝑝(,)(2 · 𝑝)) → 𝑥 ∈ ℝ)
98adantl 275 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑥 ∈ ℝ)
107, 9resubcld 8143 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) ∈ ℝ)
11 eliooord 9711 . . . . . . . . . . . 12 (𝑥 ∈ (𝑝(,)(2 · 𝑝)) → (𝑝 < 𝑥𝑥 < (2 · 𝑝)))
1211simprd 113 . . . . . . . . . . 11 (𝑥 ∈ (𝑝(,)(2 · 𝑝)) → 𝑥 < (2 · 𝑝))
1312adantl 275 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑥 < (2 · 𝑝))
149, 7posdifd 8294 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (𝑥 < (2 · 𝑝) ↔ 0 < ((2 · 𝑝) − 𝑥)))
1513, 14mpbid 146 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 0 < ((2 · 𝑝) − 𝑥))
1611simpld 111 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑝(,)(2 · 𝑝)) → 𝑝 < 𝑥)
1716adantl 275 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑝 < 𝑥)
186, 9, 7, 17ltsub2dd 8320 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) < ((2 · 𝑝) − 𝑝))
196recnd 7794 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑝 ∈ ℂ)
2019mulid2d 7784 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (1 · 𝑝) = 𝑝)
2120oveq2d 5790 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − (1 · 𝑝)) = ((2 · 𝑝) − 𝑝))
2218, 21breqtrrd 3956 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) < ((2 · 𝑝) − (1 · 𝑝)))
234recnd 7794 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 2 ∈ ℂ)
24 1cnd 7782 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 1 ∈ ℂ)
2523, 24, 19subdird 8177 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 − 1) · 𝑝) = ((2 · 𝑝) − (1 · 𝑝)))
2622, 25breqtrrd 3956 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) < ((2 − 1) · 𝑝))
27 2m1e1 8838 . . . . . . . . . . . . . 14 (2 − 1) = 1
2827oveq1i 5784 . . . . . . . . . . . . 13 ((2 − 1) · 𝑝) = (1 · 𝑝)
2928, 20syl5eq 2184 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 − 1) · 𝑝) = 𝑝)
3026, 29breqtrd 3954 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) < 𝑝)
31 eliooord 9711 . . . . . . . . . . . . 13 (𝑝 ∈ (1(,)2) → (1 < 𝑝𝑝 < 2))
3231simprd 113 . . . . . . . . . . . 12 (𝑝 ∈ (1(,)2) → 𝑝 < 2)
3332ad2antrr 479 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑝 < 2)
3410, 6, 4, 30, 33lttrd 7888 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) < 2)
3510, 4, 34ltled 7881 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) ≤ 2)
36 0xr 7812 . . . . . . . . . 10 0 ∈ ℝ*
37 elioc2 9719 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (((2 · 𝑝) − 𝑥) ∈ (0(,]2) ↔ (((2 · 𝑝) − 𝑥) ∈ ℝ ∧ 0 < ((2 · 𝑝) − 𝑥) ∧ ((2 · 𝑝) − 𝑥) ≤ 2)))
3836, 3, 37mp2an 422 . . . . . . . . 9 (((2 · 𝑝) − 𝑥) ∈ (0(,]2) ↔ (((2 · 𝑝) − 𝑥) ∈ ℝ ∧ 0 < ((2 · 𝑝) − 𝑥) ∧ ((2 · 𝑝) − 𝑥) ≤ 2))
3910, 15, 35, 38syl3anbrc 1165 . . . . . . . 8 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) ∈ (0(,]2))
40 sin02gt0 11470 . . . . . . . 8 (((2 · 𝑝) − 𝑥) ∈ (0(,]2) → 0 < (sin‘((2 · 𝑝) − 𝑥)))
4139, 40syl 14 . . . . . . 7 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 0 < (sin‘((2 · 𝑝) − 𝑥)))
427recnd 7794 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · 𝑝) ∈ ℂ)
439recnd 7794 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑥 ∈ ℂ)
4442, 43subcld 8073 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) ∈ ℂ)
45 sinsub 11447 . . . . . . . . . . . 12 (((2 · 𝑝) ∈ ℂ ∧ ((2 · 𝑝) − 𝑥) ∈ ℂ) → (sin‘((2 · 𝑝) − ((2 · 𝑝) − 𝑥))) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − ((cos‘(2 · 𝑝)) · (sin‘((2 · 𝑝) − 𝑥)))))
4642, 44, 45syl2anc 408 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘((2 · 𝑝) − ((2 · 𝑝) − 𝑥))) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − ((cos‘(2 · 𝑝)) · (sin‘((2 · 𝑝) − 𝑥)))))
4742, 43nncand 8078 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − ((2 · 𝑝) − 𝑥)) = 𝑥)
4847fveq2d 5425 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘((2 · 𝑝) − ((2 · 𝑝) − 𝑥))) = (sin‘𝑥))
49 cos2t 11457 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℂ → (cos‘(2 · 𝑝)) = ((2 · ((cos‘𝑝)↑2)) − 1))
5019, 49syl 14 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (cos‘(2 · 𝑝)) = ((2 · ((cos‘𝑝)↑2)) − 1))
51 simplr 519 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (cos‘𝑝) = 0)
5251sq0id 10385 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((cos‘𝑝)↑2) = 0)
5352oveq2d 5790 . . . . . . . . . . . . . . . . . 18 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · ((cos‘𝑝)↑2)) = (2 · 0))
54 2t0e0 8879 . . . . . . . . . . . . . . . . . 18 (2 · 0) = 0
5553, 54syl6eq 2188 . . . . . . . . . . . . . . . . 17 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · ((cos‘𝑝)↑2)) = 0)
5655oveq1d 5789 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · ((cos‘𝑝)↑2)) − 1) = (0 − 1))
57 df-neg 7936 . . . . . . . . . . . . . . . 16 -1 = (0 − 1)
5856, 57syl6eqr 2190 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · ((cos‘𝑝)↑2)) − 1) = -1)
5950, 58eqtrd 2172 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (cos‘(2 · 𝑝)) = -1)
6059oveq1d 5789 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((cos‘(2 · 𝑝)) · (sin‘((2 · 𝑝) − 𝑥))) = (-1 · (sin‘((2 · 𝑝) − 𝑥))))
6144sincld 11417 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘((2 · 𝑝) − 𝑥)) ∈ ℂ)
6261mulm1d 8172 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (-1 · (sin‘((2 · 𝑝) − 𝑥))) = -(sin‘((2 · 𝑝) − 𝑥)))
6360, 62eqtrd 2172 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((cos‘(2 · 𝑝)) · (sin‘((2 · 𝑝) − 𝑥))) = -(sin‘((2 · 𝑝) − 𝑥)))
6463oveq2d 5790 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − ((cos‘(2 · 𝑝)) · (sin‘((2 · 𝑝) − 𝑥)))) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − -(sin‘((2 · 𝑝) − 𝑥))))
6546, 48, 643eqtr3d 2180 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘𝑥) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − -(sin‘((2 · 𝑝) − 𝑥))))
6642sincld 11417 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘(2 · 𝑝)) ∈ ℂ)
6744coscld 11418 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (cos‘((2 · 𝑝) − 𝑥)) ∈ ℂ)
6866, 67mulcld 7786 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) ∈ ℂ)
6968, 61subnegd 8080 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − -(sin‘((2 · 𝑝) − 𝑥))) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) + (sin‘((2 · 𝑝) − 𝑥))))
7065, 69eqtrd 2172 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘𝑥) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) + (sin‘((2 · 𝑝) − 𝑥))))
71 sin2t 11456 . . . . . . . . . . . . . 14 (𝑝 ∈ ℂ → (sin‘(2 · 𝑝)) = (2 · ((sin‘𝑝) · (cos‘𝑝))))
7219, 71syl 14 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘(2 · 𝑝)) = (2 · ((sin‘𝑝) · (cos‘𝑝))))
7351oveq2d 5790 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘𝑝) · (cos‘𝑝)) = ((sin‘𝑝) · 0))
7419sincld 11417 . . . . . . . . . . . . . . . . 17 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘𝑝) ∈ ℂ)
7574mul01d 8155 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘𝑝) · 0) = 0)
7673, 75eqtrd 2172 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘𝑝) · (cos‘𝑝)) = 0)
7776oveq2d 5790 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · ((sin‘𝑝) · (cos‘𝑝))) = (2 · 0))
7877, 54syl6eq 2188 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · ((sin‘𝑝) · (cos‘𝑝))) = 0)
7972, 78eqtrd 2172 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘(2 · 𝑝)) = 0)
8079oveq1d 5789 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) = (0 · (cos‘((2 · 𝑝) − 𝑥))))
8167mul02d 8154 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (0 · (cos‘((2 · 𝑝) − 𝑥))) = 0)
8280, 81eqtrd 2172 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) = 0)
8382oveq1d 5789 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) + (sin‘((2 · 𝑝) − 𝑥))) = (0 + (sin‘((2 · 𝑝) − 𝑥))))
8470, 83eqtrd 2172 . . . . . . . 8 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘𝑥) = (0 + (sin‘((2 · 𝑝) − 𝑥))))
8561addid2d 7912 . . . . . . . 8 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (0 + (sin‘((2 · 𝑝) − 𝑥))) = (sin‘((2 · 𝑝) − 𝑥)))
8684, 85eqtrd 2172 . . . . . . 7 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘𝑥) = (sin‘((2 · 𝑝) − 𝑥)))
8741, 86breqtrrd 3956 . . . . . 6 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 0 < (sin‘𝑥))
8887ralrimiva 2505 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) → ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥))
892, 88jca 304 . . . 4 ((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) → ((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥)))
9089ex 114 . . 3 (𝑝 ∈ (1(,)2) → ((cos‘𝑝) = 0 → ((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥))))
9190reximia 2527 . 2 (∃𝑝 ∈ (1(,)2)(cos‘𝑝) = 0 → ∃𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥)))
921, 91ax-mp 5 1 𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  wral 2416  wrex 2417   class class class wbr 3929  cfv 5123  (class class class)co 5774  cc 7618  cr 7619  0cc0 7620  1c1 7621   + caddc 7623   · cmul 7625  *cxr 7799   < clt 7800  cle 7801  cmin 7933  -cneg 7934  2c2 8771  (,)cioo 9671  (,]cioc 9672  cexp 10292  sincsin 11350  cosccos 11351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740  ax-pre-suploc 7741  ax-addf 7742  ax-mulf 7743
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-map 6544  df-pm 6545  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-5 8782  df-6 8783  df-7 8784  df-8 8785  df-9 8786  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-ioo 9675  df-ioc 9676  df-ico 9677  df-icc 9678  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-fac 10472  df-bc 10494  df-ihash 10522  df-shft 10587  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123  df-ef 11354  df-sin 11356  df-cos 11357  df-rest 12122  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-met 12158  df-bl 12159  df-mopn 12160  df-top 12165  df-topon 12178  df-bases 12210  df-ntr 12265  df-cn 12357  df-cnp 12358  df-tx 12422  df-cncf 12727  df-limced 12794  df-dvap 12795
This theorem is referenced by:  sin0pilem2  12863
  Copyright terms: Public domain W3C validator