ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin0pilem1 GIF version

Theorem sin0pilem1 13496
Description: Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
Assertion
Ref Expression
sin0pilem1 𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥))
Distinct variable group:   𝑥,𝑝

Proof of Theorem sin0pilem1
StepHypRef Expression
1 cosz12 13495 . 2 𝑝 ∈ (1(,)2)(cos‘𝑝) = 0
2 simpr 109 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) → (cos‘𝑝) = 0)
3 2re 8948 . . . . . . . . . . . 12 2 ∈ ℝ
43a1i 9 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 2 ∈ ℝ)
5 elioore 9869 . . . . . . . . . . . 12 (𝑝 ∈ (1(,)2) → 𝑝 ∈ ℝ)
65ad2antrr 485 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑝 ∈ ℝ)
74, 6remulcld 7950 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · 𝑝) ∈ ℝ)
8 elioore 9869 . . . . . . . . . . 11 (𝑥 ∈ (𝑝(,)(2 · 𝑝)) → 𝑥 ∈ ℝ)
98adantl 275 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑥 ∈ ℝ)
107, 9resubcld 8300 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) ∈ ℝ)
11 eliooord 9885 . . . . . . . . . . . 12 (𝑥 ∈ (𝑝(,)(2 · 𝑝)) → (𝑝 < 𝑥𝑥 < (2 · 𝑝)))
1211simprd 113 . . . . . . . . . . 11 (𝑥 ∈ (𝑝(,)(2 · 𝑝)) → 𝑥 < (2 · 𝑝))
1312adantl 275 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑥 < (2 · 𝑝))
149, 7posdifd 8451 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (𝑥 < (2 · 𝑝) ↔ 0 < ((2 · 𝑝) − 𝑥)))
1513, 14mpbid 146 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 0 < ((2 · 𝑝) − 𝑥))
1611simpld 111 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑝(,)(2 · 𝑝)) → 𝑝 < 𝑥)
1716adantl 275 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑝 < 𝑥)
186, 9, 7, 17ltsub2dd 8477 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) < ((2 · 𝑝) − 𝑝))
196recnd 7948 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑝 ∈ ℂ)
2019mulid2d 7938 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (1 · 𝑝) = 𝑝)
2120oveq2d 5869 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − (1 · 𝑝)) = ((2 · 𝑝) − 𝑝))
2218, 21breqtrrd 4017 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) < ((2 · 𝑝) − (1 · 𝑝)))
234recnd 7948 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 2 ∈ ℂ)
24 1cnd 7936 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 1 ∈ ℂ)
2523, 24, 19subdird 8334 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 − 1) · 𝑝) = ((2 · 𝑝) − (1 · 𝑝)))
2622, 25breqtrrd 4017 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) < ((2 − 1) · 𝑝))
27 2m1e1 8996 . . . . . . . . . . . . . 14 (2 − 1) = 1
2827oveq1i 5863 . . . . . . . . . . . . 13 ((2 − 1) · 𝑝) = (1 · 𝑝)
2928, 20eqtrid 2215 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 − 1) · 𝑝) = 𝑝)
3026, 29breqtrd 4015 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) < 𝑝)
31 eliooord 9885 . . . . . . . . . . . . 13 (𝑝 ∈ (1(,)2) → (1 < 𝑝𝑝 < 2))
3231simprd 113 . . . . . . . . . . . 12 (𝑝 ∈ (1(,)2) → 𝑝 < 2)
3332ad2antrr 485 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑝 < 2)
3410, 6, 4, 30, 33lttrd 8045 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) < 2)
3510, 4, 34ltled 8038 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) ≤ 2)
36 0xr 7966 . . . . . . . . . 10 0 ∈ ℝ*
37 elioc2 9893 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (((2 · 𝑝) − 𝑥) ∈ (0(,]2) ↔ (((2 · 𝑝) − 𝑥) ∈ ℝ ∧ 0 < ((2 · 𝑝) − 𝑥) ∧ ((2 · 𝑝) − 𝑥) ≤ 2)))
3836, 3, 37mp2an 424 . . . . . . . . 9 (((2 · 𝑝) − 𝑥) ∈ (0(,]2) ↔ (((2 · 𝑝) − 𝑥) ∈ ℝ ∧ 0 < ((2 · 𝑝) − 𝑥) ∧ ((2 · 𝑝) − 𝑥) ≤ 2))
3910, 15, 35, 38syl3anbrc 1176 . . . . . . . 8 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) ∈ (0(,]2))
40 sin02gt0 11726 . . . . . . . 8 (((2 · 𝑝) − 𝑥) ∈ (0(,]2) → 0 < (sin‘((2 · 𝑝) − 𝑥)))
4139, 40syl 14 . . . . . . 7 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 0 < (sin‘((2 · 𝑝) − 𝑥)))
427recnd 7948 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · 𝑝) ∈ ℂ)
439recnd 7948 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 𝑥 ∈ ℂ)
4442, 43subcld 8230 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − 𝑥) ∈ ℂ)
45 sinsub 11703 . . . . . . . . . . . 12 (((2 · 𝑝) ∈ ℂ ∧ ((2 · 𝑝) − 𝑥) ∈ ℂ) → (sin‘((2 · 𝑝) − ((2 · 𝑝) − 𝑥))) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − ((cos‘(2 · 𝑝)) · (sin‘((2 · 𝑝) − 𝑥)))))
4642, 44, 45syl2anc 409 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘((2 · 𝑝) − ((2 · 𝑝) − 𝑥))) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − ((cos‘(2 · 𝑝)) · (sin‘((2 · 𝑝) − 𝑥)))))
4742, 43nncand 8235 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · 𝑝) − ((2 · 𝑝) − 𝑥)) = 𝑥)
4847fveq2d 5500 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘((2 · 𝑝) − ((2 · 𝑝) − 𝑥))) = (sin‘𝑥))
49 cos2t 11713 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℂ → (cos‘(2 · 𝑝)) = ((2 · ((cos‘𝑝)↑2)) − 1))
5019, 49syl 14 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (cos‘(2 · 𝑝)) = ((2 · ((cos‘𝑝)↑2)) − 1))
51 simplr 525 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (cos‘𝑝) = 0)
5251sq0id 10568 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((cos‘𝑝)↑2) = 0)
5352oveq2d 5869 . . . . . . . . . . . . . . . . . 18 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · ((cos‘𝑝)↑2)) = (2 · 0))
54 2t0e0 9037 . . . . . . . . . . . . . . . . . 18 (2 · 0) = 0
5553, 54eqtrdi 2219 . . . . . . . . . . . . . . . . 17 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · ((cos‘𝑝)↑2)) = 0)
5655oveq1d 5868 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · ((cos‘𝑝)↑2)) − 1) = (0 − 1))
57 df-neg 8093 . . . . . . . . . . . . . . . 16 -1 = (0 − 1)
5856, 57eqtr4di 2221 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((2 · ((cos‘𝑝)↑2)) − 1) = -1)
5950, 58eqtrd 2203 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (cos‘(2 · 𝑝)) = -1)
6059oveq1d 5868 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((cos‘(2 · 𝑝)) · (sin‘((2 · 𝑝) − 𝑥))) = (-1 · (sin‘((2 · 𝑝) − 𝑥))))
6144sincld 11673 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘((2 · 𝑝) − 𝑥)) ∈ ℂ)
6261mulm1d 8329 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (-1 · (sin‘((2 · 𝑝) − 𝑥))) = -(sin‘((2 · 𝑝) − 𝑥)))
6360, 62eqtrd 2203 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((cos‘(2 · 𝑝)) · (sin‘((2 · 𝑝) − 𝑥))) = -(sin‘((2 · 𝑝) − 𝑥)))
6463oveq2d 5869 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − ((cos‘(2 · 𝑝)) · (sin‘((2 · 𝑝) − 𝑥)))) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − -(sin‘((2 · 𝑝) − 𝑥))))
6546, 48, 643eqtr3d 2211 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘𝑥) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − -(sin‘((2 · 𝑝) − 𝑥))))
6642sincld 11673 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘(2 · 𝑝)) ∈ ℂ)
6744coscld 11674 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (cos‘((2 · 𝑝) − 𝑥)) ∈ ℂ)
6866, 67mulcld 7940 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) ∈ ℂ)
6968, 61subnegd 8237 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) − -(sin‘((2 · 𝑝) − 𝑥))) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) + (sin‘((2 · 𝑝) − 𝑥))))
7065, 69eqtrd 2203 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘𝑥) = (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) + (sin‘((2 · 𝑝) − 𝑥))))
71 sin2t 11712 . . . . . . . . . . . . . 14 (𝑝 ∈ ℂ → (sin‘(2 · 𝑝)) = (2 · ((sin‘𝑝) · (cos‘𝑝))))
7219, 71syl 14 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘(2 · 𝑝)) = (2 · ((sin‘𝑝) · (cos‘𝑝))))
7351oveq2d 5869 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘𝑝) · (cos‘𝑝)) = ((sin‘𝑝) · 0))
7419sincld 11673 . . . . . . . . . . . . . . . . 17 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘𝑝) ∈ ℂ)
7574mul01d 8312 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘𝑝) · 0) = 0)
7673, 75eqtrd 2203 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘𝑝) · (cos‘𝑝)) = 0)
7776oveq2d 5869 . . . . . . . . . . . . . 14 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · ((sin‘𝑝) · (cos‘𝑝))) = (2 · 0))
7877, 54eqtrdi 2219 . . . . . . . . . . . . 13 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (2 · ((sin‘𝑝) · (cos‘𝑝))) = 0)
7972, 78eqtrd 2203 . . . . . . . . . . . 12 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘(2 · 𝑝)) = 0)
8079oveq1d 5868 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) = (0 · (cos‘((2 · 𝑝) − 𝑥))))
8167mul02d 8311 . . . . . . . . . . 11 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (0 · (cos‘((2 · 𝑝) − 𝑥))) = 0)
8280, 81eqtrd 2203 . . . . . . . . . 10 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → ((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) = 0)
8382oveq1d 5868 . . . . . . . . 9 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (((sin‘(2 · 𝑝)) · (cos‘((2 · 𝑝) − 𝑥))) + (sin‘((2 · 𝑝) − 𝑥))) = (0 + (sin‘((2 · 𝑝) − 𝑥))))
8470, 83eqtrd 2203 . . . . . . . 8 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘𝑥) = (0 + (sin‘((2 · 𝑝) − 𝑥))))
8561addid2d 8069 . . . . . . . 8 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (0 + (sin‘((2 · 𝑝) − 𝑥))) = (sin‘((2 · 𝑝) − 𝑥)))
8684, 85eqtrd 2203 . . . . . . 7 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → (sin‘𝑥) = (sin‘((2 · 𝑝) − 𝑥)))
8741, 86breqtrrd 4017 . . . . . 6 (((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) ∧ 𝑥 ∈ (𝑝(,)(2 · 𝑝))) → 0 < (sin‘𝑥))
8887ralrimiva 2543 . . . . 5 ((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) → ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥))
892, 88jca 304 . . . 4 ((𝑝 ∈ (1(,)2) ∧ (cos‘𝑝) = 0) → ((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥)))
9089ex 114 . . 3 (𝑝 ∈ (1(,)2) → ((cos‘𝑝) = 0 → ((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥))))
9190reximia 2565 . 2 (∃𝑝 ∈ (1(,)2)(cos‘𝑝) = 0 → ∃𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥)))
921, 91ax-mp 5 1 𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  wral 2448  wrex 2449   class class class wbr 3989  cfv 5198  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779  *cxr 7953   < clt 7954  cle 7955  cmin 8090  -cneg 8091  2c2 8929  (,)cioo 9845  (,]cioc 9846  cexp 10475  sincsin 11607  cosccos 11608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894  ax-pre-suploc 7895  ax-addf 7896  ax-mulf 7897
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-disj 3967  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-of 6061  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-map 6628  df-pm 6629  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-7 8942  df-8 8943  df-9 8944  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-xneg 9729  df-xadd 9730  df-ioo 9849  df-ioc 9850  df-ico 9851  df-icc 9852  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-fac 10660  df-bc 10682  df-ihash 10710  df-shft 10779  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317  df-ef 11611  df-sin 11613  df-cos 11614  df-rest 12581  df-topgen 12600  df-psmet 12781  df-xmet 12782  df-met 12783  df-bl 12784  df-mopn 12785  df-top 12790  df-topon 12803  df-bases 12835  df-ntr 12890  df-cn 12982  df-cnp 12983  df-tx 13047  df-cncf 13352  df-limced 13419  df-dvap 13420
This theorem is referenced by:  sin0pilem2  13497
  Copyright terms: Public domain W3C validator