ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1idprl GIF version

Theorem 1idprl 7785
Description: Lemma for 1idpr 7787. (Contributed by Jim Kingdon, 13-Dec-2019.)
Assertion
Ref Expression
1idprl (𝐴P → (1st ‘(𝐴 ·P 1P)) = (1st𝐴))

Proof of Theorem 1idprl
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3244 . . . . . 6 (1st ‘1P) ⊆ (1st ‘1P)
2 rexss 3291 . . . . . 6 ((1st ‘1P) ⊆ (1st ‘1P) → (∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔) ↔ ∃𝑔 ∈ (1st ‘1P)(𝑔 ∈ (1st ‘1P) ∧ 𝑥 = (𝑓 ·Q 𝑔))))
31, 2ax-mp 5 . . . . 5 (∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔) ↔ ∃𝑔 ∈ (1st ‘1P)(𝑔 ∈ (1st ‘1P) ∧ 𝑥 = (𝑓 ·Q 𝑔)))
4 1pr 7749 . . . . . . . . . . 11 1PP
5 prop 7670 . . . . . . . . . . . 12 (1PP → ⟨(1st ‘1P), (2nd ‘1P)⟩ ∈ P)
6 elprnql 7676 . . . . . . . . . . . 12 ((⟨(1st ‘1P), (2nd ‘1P)⟩ ∈ P𝑔 ∈ (1st ‘1P)) → 𝑔Q)
75, 6sylan 283 . . . . . . . . . . 11 ((1PP𝑔 ∈ (1st ‘1P)) → 𝑔Q)
84, 7mpan 424 . . . . . . . . . 10 (𝑔 ∈ (1st ‘1P) → 𝑔Q)
9 prop 7670 . . . . . . . . . . . 12 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
10 elprnql 7676 . . . . . . . . . . . 12 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑓 ∈ (1st𝐴)) → 𝑓Q)
119, 10sylan 283 . . . . . . . . . . 11 ((𝐴P𝑓 ∈ (1st𝐴)) → 𝑓Q)
12 breq1 4086 . . . . . . . . . . . . 13 (𝑥 = (𝑓 ·Q 𝑔) → (𝑥 <Q 𝑓 ↔ (𝑓 ·Q 𝑔) <Q 𝑓))
13123ad2ant3 1044 . . . . . . . . . . . 12 ((𝑓Q𝑔Q𝑥 = (𝑓 ·Q 𝑔)) → (𝑥 <Q 𝑓 ↔ (𝑓 ·Q 𝑔) <Q 𝑓))
14 1prl 7750 . . . . . . . . . . . . . . 15 (1st ‘1P) = {𝑔𝑔 <Q 1Q}
1514abeq2i 2340 . . . . . . . . . . . . . 14 (𝑔 ∈ (1st ‘1P) ↔ 𝑔 <Q 1Q)
16 1nq 7561 . . . . . . . . . . . . . . . . 17 1QQ
17 ltmnqg 7596 . . . . . . . . . . . . . . . . 17 ((𝑔Q ∧ 1QQ𝑓Q) → (𝑔 <Q 1Q ↔ (𝑓 ·Q 𝑔) <Q (𝑓 ·Q 1Q)))
1816, 17mp3an2 1359 . . . . . . . . . . . . . . . 16 ((𝑔Q𝑓Q) → (𝑔 <Q 1Q ↔ (𝑓 ·Q 𝑔) <Q (𝑓 ·Q 1Q)))
1918ancoms 268 . . . . . . . . . . . . . . 15 ((𝑓Q𝑔Q) → (𝑔 <Q 1Q ↔ (𝑓 ·Q 𝑔) <Q (𝑓 ·Q 1Q)))
20 mulidnq 7584 . . . . . . . . . . . . . . . . 17 (𝑓Q → (𝑓 ·Q 1Q) = 𝑓)
2120breq2d 4095 . . . . . . . . . . . . . . . 16 (𝑓Q → ((𝑓 ·Q 𝑔) <Q (𝑓 ·Q 1Q) ↔ (𝑓 ·Q 𝑔) <Q 𝑓))
2221adantr 276 . . . . . . . . . . . . . . 15 ((𝑓Q𝑔Q) → ((𝑓 ·Q 𝑔) <Q (𝑓 ·Q 1Q) ↔ (𝑓 ·Q 𝑔) <Q 𝑓))
2319, 22bitrd 188 . . . . . . . . . . . . . 14 ((𝑓Q𝑔Q) → (𝑔 <Q 1Q ↔ (𝑓 ·Q 𝑔) <Q 𝑓))
2415, 23bitr2id 193 . . . . . . . . . . . . 13 ((𝑓Q𝑔Q) → ((𝑓 ·Q 𝑔) <Q 𝑓𝑔 ∈ (1st ‘1P)))
25243adant3 1041 . . . . . . . . . . . 12 ((𝑓Q𝑔Q𝑥 = (𝑓 ·Q 𝑔)) → ((𝑓 ·Q 𝑔) <Q 𝑓𝑔 ∈ (1st ‘1P)))
2613, 25bitrd 188 . . . . . . . . . . 11 ((𝑓Q𝑔Q𝑥 = (𝑓 ·Q 𝑔)) → (𝑥 <Q 𝑓𝑔 ∈ (1st ‘1P)))
2711, 26syl3an1 1304 . . . . . . . . . 10 (((𝐴P𝑓 ∈ (1st𝐴)) ∧ 𝑔Q𝑥 = (𝑓 ·Q 𝑔)) → (𝑥 <Q 𝑓𝑔 ∈ (1st ‘1P)))
288, 27syl3an2 1305 . . . . . . . . 9 (((𝐴P𝑓 ∈ (1st𝐴)) ∧ 𝑔 ∈ (1st ‘1P) ∧ 𝑥 = (𝑓 ·Q 𝑔)) → (𝑥 <Q 𝑓𝑔 ∈ (1st ‘1P)))
29283expia 1229 . . . . . . . 8 (((𝐴P𝑓 ∈ (1st𝐴)) ∧ 𝑔 ∈ (1st ‘1P)) → (𝑥 = (𝑓 ·Q 𝑔) → (𝑥 <Q 𝑓𝑔 ∈ (1st ‘1P))))
3029pm5.32rd 451 . . . . . . 7 (((𝐴P𝑓 ∈ (1st𝐴)) ∧ 𝑔 ∈ (1st ‘1P)) → ((𝑥 <Q 𝑓𝑥 = (𝑓 ·Q 𝑔)) ↔ (𝑔 ∈ (1st ‘1P) ∧ 𝑥 = (𝑓 ·Q 𝑔))))
3130rexbidva 2527 . . . . . 6 ((𝐴P𝑓 ∈ (1st𝐴)) → (∃𝑔 ∈ (1st ‘1P)(𝑥 <Q 𝑓𝑥 = (𝑓 ·Q 𝑔)) ↔ ∃𝑔 ∈ (1st ‘1P)(𝑔 ∈ (1st ‘1P) ∧ 𝑥 = (𝑓 ·Q 𝑔))))
32 r19.42v 2688 . . . . . 6 (∃𝑔 ∈ (1st ‘1P)(𝑥 <Q 𝑓𝑥 = (𝑓 ·Q 𝑔)) ↔ (𝑥 <Q 𝑓 ∧ ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔)))
3331, 32bitr3di 195 . . . . 5 ((𝐴P𝑓 ∈ (1st𝐴)) → (∃𝑔 ∈ (1st ‘1P)(𝑔 ∈ (1st ‘1P) ∧ 𝑥 = (𝑓 ·Q 𝑔)) ↔ (𝑥 <Q 𝑓 ∧ ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔))))
343, 33bitrid 192 . . . 4 ((𝐴P𝑓 ∈ (1st𝐴)) → (∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔) ↔ (𝑥 <Q 𝑓 ∧ ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔))))
3534rexbidva 2527 . . 3 (𝐴P → (∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔) ↔ ∃𝑓 ∈ (1st𝐴)(𝑥 <Q 𝑓 ∧ ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔))))
36 df-imp 7664 . . . . 5 ·P = (𝑦P, 𝑧P ↦ ⟨{𝑤Q ∣ ∃𝑢Q𝑣Q (𝑢 ∈ (1st𝑦) ∧ 𝑣 ∈ (1st𝑧) ∧ 𝑤 = (𝑢 ·Q 𝑣))}, {𝑤Q ∣ ∃𝑢Q𝑣Q (𝑢 ∈ (2nd𝑦) ∧ 𝑣 ∈ (2nd𝑧) ∧ 𝑤 = (𝑢 ·Q 𝑣))}⟩)
37 mulclnq 7571 . . . . 5 ((𝑢Q𝑣Q) → (𝑢 ·Q 𝑣) ∈ Q)
3836, 37genpelvl 7707 . . . 4 ((𝐴P ∧ 1PP) → (𝑥 ∈ (1st ‘(𝐴 ·P 1P)) ↔ ∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔)))
394, 38mpan2 425 . . 3 (𝐴P → (𝑥 ∈ (1st ‘(𝐴 ·P 1P)) ↔ ∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔)))
40 prnmaxl 7683 . . . . . . 7 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑥 ∈ (1st𝐴)) → ∃𝑓 ∈ (1st𝐴)𝑥 <Q 𝑓)
419, 40sylan 283 . . . . . 6 ((𝐴P𝑥 ∈ (1st𝐴)) → ∃𝑓 ∈ (1st𝐴)𝑥 <Q 𝑓)
42 ltrelnq 7560 . . . . . . . . . . . . 13 <Q ⊆ (Q × Q)
4342brel 4771 . . . . . . . . . . . 12 (𝑥 <Q 𝑓 → (𝑥Q𝑓Q))
44 ltmnqg 7596 . . . . . . . . . . . . . . . 16 ((𝑦Q𝑧Q𝑤Q) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
4544adantl 277 . . . . . . . . . . . . . . 15 (((𝑥Q𝑓Q) ∧ (𝑦Q𝑧Q𝑤Q)) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
46 simpl 109 . . . . . . . . . . . . . . 15 ((𝑥Q𝑓Q) → 𝑥Q)
47 simpr 110 . . . . . . . . . . . . . . 15 ((𝑥Q𝑓Q) → 𝑓Q)
48 recclnq 7587 . . . . . . . . . . . . . . . 16 (𝑓Q → (*Q𝑓) ∈ Q)
4948adantl 277 . . . . . . . . . . . . . . 15 ((𝑥Q𝑓Q) → (*Q𝑓) ∈ Q)
50 mulcomnqg 7578 . . . . . . . . . . . . . . . 16 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
5150adantl 277 . . . . . . . . . . . . . . 15 (((𝑥Q𝑓Q) ∧ (𝑦Q𝑧Q)) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
5245, 46, 47, 49, 51caovord2d 6181 . . . . . . . . . . . . . 14 ((𝑥Q𝑓Q) → (𝑥 <Q 𝑓 ↔ (𝑥 ·Q (*Q𝑓)) <Q (𝑓 ·Q (*Q𝑓))))
53 recidnq 7588 . . . . . . . . . . . . . . . 16 (𝑓Q → (𝑓 ·Q (*Q𝑓)) = 1Q)
5453breq2d 4095 . . . . . . . . . . . . . . 15 (𝑓Q → ((𝑥 ·Q (*Q𝑓)) <Q (𝑓 ·Q (*Q𝑓)) ↔ (𝑥 ·Q (*Q𝑓)) <Q 1Q))
5554adantl 277 . . . . . . . . . . . . . 14 ((𝑥Q𝑓Q) → ((𝑥 ·Q (*Q𝑓)) <Q (𝑓 ·Q (*Q𝑓)) ↔ (𝑥 ·Q (*Q𝑓)) <Q 1Q))
5652, 55bitrd 188 . . . . . . . . . . . . 13 ((𝑥Q𝑓Q) → (𝑥 <Q 𝑓 ↔ (𝑥 ·Q (*Q𝑓)) <Q 1Q))
5756biimpd 144 . . . . . . . . . . . 12 ((𝑥Q𝑓Q) → (𝑥 <Q 𝑓 → (𝑥 ·Q (*Q𝑓)) <Q 1Q))
5843, 57mpcom 36 . . . . . . . . . . 11 (𝑥 <Q 𝑓 → (𝑥 ·Q (*Q𝑓)) <Q 1Q)
59 mulclnq 7571 . . . . . . . . . . . . . 14 ((𝑥Q ∧ (*Q𝑓) ∈ Q) → (𝑥 ·Q (*Q𝑓)) ∈ Q)
6048, 59sylan2 286 . . . . . . . . . . . . 13 ((𝑥Q𝑓Q) → (𝑥 ·Q (*Q𝑓)) ∈ Q)
6143, 60syl 14 . . . . . . . . . . . 12 (𝑥 <Q 𝑓 → (𝑥 ·Q (*Q𝑓)) ∈ Q)
62 breq1 4086 . . . . . . . . . . . . 13 (𝑔 = (𝑥 ·Q (*Q𝑓)) → (𝑔 <Q 1Q ↔ (𝑥 ·Q (*Q𝑓)) <Q 1Q))
6362, 14elab2g 2950 . . . . . . . . . . . 12 ((𝑥 ·Q (*Q𝑓)) ∈ Q → ((𝑥 ·Q (*Q𝑓)) ∈ (1st ‘1P) ↔ (𝑥 ·Q (*Q𝑓)) <Q 1Q))
6461, 63syl 14 . . . . . . . . . . 11 (𝑥 <Q 𝑓 → ((𝑥 ·Q (*Q𝑓)) ∈ (1st ‘1P) ↔ (𝑥 ·Q (*Q𝑓)) <Q 1Q))
6558, 64mpbird 167 . . . . . . . . . 10 (𝑥 <Q 𝑓 → (𝑥 ·Q (*Q𝑓)) ∈ (1st ‘1P))
66 mulassnqg 7579 . . . . . . . . . . . . . 14 ((𝑦Q𝑧Q𝑤Q) → ((𝑦 ·Q 𝑧) ·Q 𝑤) = (𝑦 ·Q (𝑧 ·Q 𝑤)))
6766adantl 277 . . . . . . . . . . . . 13 (((𝑥Q𝑓Q) ∧ (𝑦Q𝑧Q𝑤Q)) → ((𝑦 ·Q 𝑧) ·Q 𝑤) = (𝑦 ·Q (𝑧 ·Q 𝑤)))
6847, 46, 49, 51, 67caov12d 6193 . . . . . . . . . . . 12 ((𝑥Q𝑓Q) → (𝑓 ·Q (𝑥 ·Q (*Q𝑓))) = (𝑥 ·Q (𝑓 ·Q (*Q𝑓))))
6953oveq2d 6023 . . . . . . . . . . . . 13 (𝑓Q → (𝑥 ·Q (𝑓 ·Q (*Q𝑓))) = (𝑥 ·Q 1Q))
7069adantl 277 . . . . . . . . . . . 12 ((𝑥Q𝑓Q) → (𝑥 ·Q (𝑓 ·Q (*Q𝑓))) = (𝑥 ·Q 1Q))
71 mulidnq 7584 . . . . . . . . . . . . 13 (𝑥Q → (𝑥 ·Q 1Q) = 𝑥)
7271adantr 276 . . . . . . . . . . . 12 ((𝑥Q𝑓Q) → (𝑥 ·Q 1Q) = 𝑥)
7368, 70, 723eqtrrd 2267 . . . . . . . . . . 11 ((𝑥Q𝑓Q) → 𝑥 = (𝑓 ·Q (𝑥 ·Q (*Q𝑓))))
7443, 73syl 14 . . . . . . . . . 10 (𝑥 <Q 𝑓𝑥 = (𝑓 ·Q (𝑥 ·Q (*Q𝑓))))
75 oveq2 6015 . . . . . . . . . . . 12 (𝑔 = (𝑥 ·Q (*Q𝑓)) → (𝑓 ·Q 𝑔) = (𝑓 ·Q (𝑥 ·Q (*Q𝑓))))
7675eqeq2d 2241 . . . . . . . . . . 11 (𝑔 = (𝑥 ·Q (*Q𝑓)) → (𝑥 = (𝑓 ·Q 𝑔) ↔ 𝑥 = (𝑓 ·Q (𝑥 ·Q (*Q𝑓)))))
7776rspcev 2907 . . . . . . . . . 10 (((𝑥 ·Q (*Q𝑓)) ∈ (1st ‘1P) ∧ 𝑥 = (𝑓 ·Q (𝑥 ·Q (*Q𝑓)))) → ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔))
7865, 74, 77syl2anc 411 . . . . . . . . 9 (𝑥 <Q 𝑓 → ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔))
7978a1i 9 . . . . . . . 8 (𝑓 ∈ (1st𝐴) → (𝑥 <Q 𝑓 → ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔)))
8079ancld 325 . . . . . . 7 (𝑓 ∈ (1st𝐴) → (𝑥 <Q 𝑓 → (𝑥 <Q 𝑓 ∧ ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔))))
8180reximia 2625 . . . . . 6 (∃𝑓 ∈ (1st𝐴)𝑥 <Q 𝑓 → ∃𝑓 ∈ (1st𝐴)(𝑥 <Q 𝑓 ∧ ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔)))
8241, 81syl 14 . . . . 5 ((𝐴P𝑥 ∈ (1st𝐴)) → ∃𝑓 ∈ (1st𝐴)(𝑥 <Q 𝑓 ∧ ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔)))
8382ex 115 . . . 4 (𝐴P → (𝑥 ∈ (1st𝐴) → ∃𝑓 ∈ (1st𝐴)(𝑥 <Q 𝑓 ∧ ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔))))
84 prcdnql 7679 . . . . . . 7 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑓 ∈ (1st𝐴)) → (𝑥 <Q 𝑓𝑥 ∈ (1st𝐴)))
859, 84sylan 283 . . . . . 6 ((𝐴P𝑓 ∈ (1st𝐴)) → (𝑥 <Q 𝑓𝑥 ∈ (1st𝐴)))
8685adantrd 279 . . . . 5 ((𝐴P𝑓 ∈ (1st𝐴)) → ((𝑥 <Q 𝑓 ∧ ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔)) → 𝑥 ∈ (1st𝐴)))
8786rexlimdva 2648 . . . 4 (𝐴P → (∃𝑓 ∈ (1st𝐴)(𝑥 <Q 𝑓 ∧ ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔)) → 𝑥 ∈ (1st𝐴)))
8883, 87impbid 129 . . 3 (𝐴P → (𝑥 ∈ (1st𝐴) ↔ ∃𝑓 ∈ (1st𝐴)(𝑥 <Q 𝑓 ∧ ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔))))
8935, 39, 883bitr4d 220 . 2 (𝐴P → (𝑥 ∈ (1st ‘(𝐴 ·P 1P)) ↔ 𝑥 ∈ (1st𝐴)))
9089eqrdv 2227 1 (𝐴P → (1st ‘(𝐴 ·P 1P)) = (1st𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wrex 2509  wss 3197  cop 3669   class class class wbr 4083  cfv 5318  (class class class)co 6007  1st c1st 6290  2nd c2nd 6291  Qcnq 7475  1Qc1q 7476   ·Q cmq 7478  *Qcrq 7479   <Q cltq 7480  Pcnp 7486  1Pc1p 7487   ·P cmp 7489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-1o 6568  df-oadd 6572  df-omul 6573  df-er 6688  df-ec 6690  df-qs 6694  df-ni 7499  df-pli 7500  df-mi 7501  df-lti 7502  df-plpq 7539  df-mpq 7540  df-enq 7542  df-nqqs 7543  df-plqqs 7544  df-mqqs 7545  df-1nqqs 7546  df-rq 7547  df-ltnqqs 7548  df-inp 7661  df-i1p 7662  df-imp 7664
This theorem is referenced by:  1idpr  7787
  Copyright terms: Public domain W3C validator