ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1idprl GIF version

Theorem 1idprl 7422
Description: Lemma for 1idpr 7424. (Contributed by Jim Kingdon, 13-Dec-2019.)
Assertion
Ref Expression
1idprl (𝐴P → (1st ‘(𝐴 ·P 1P)) = (1st𝐴))

Proof of Theorem 1idprl
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3122 . . . . . 6 (1st ‘1P) ⊆ (1st ‘1P)
2 rexss 3169 . . . . . 6 ((1st ‘1P) ⊆ (1st ‘1P) → (∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔) ↔ ∃𝑔 ∈ (1st ‘1P)(𝑔 ∈ (1st ‘1P) ∧ 𝑥 = (𝑓 ·Q 𝑔))))
31, 2ax-mp 5 . . . . 5 (∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔) ↔ ∃𝑔 ∈ (1st ‘1P)(𝑔 ∈ (1st ‘1P) ∧ 𝑥 = (𝑓 ·Q 𝑔)))
4 1pr 7386 . . . . . . . . . . 11 1PP
5 prop 7307 . . . . . . . . . . . 12 (1PP → ⟨(1st ‘1P), (2nd ‘1P)⟩ ∈ P)
6 elprnql 7313 . . . . . . . . . . . 12 ((⟨(1st ‘1P), (2nd ‘1P)⟩ ∈ P𝑔 ∈ (1st ‘1P)) → 𝑔Q)
75, 6sylan 281 . . . . . . . . . . 11 ((1PP𝑔 ∈ (1st ‘1P)) → 𝑔Q)
84, 7mpan 421 . . . . . . . . . 10 (𝑔 ∈ (1st ‘1P) → 𝑔Q)
9 prop 7307 . . . . . . . . . . . 12 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
10 elprnql 7313 . . . . . . . . . . . 12 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑓 ∈ (1st𝐴)) → 𝑓Q)
119, 10sylan 281 . . . . . . . . . . 11 ((𝐴P𝑓 ∈ (1st𝐴)) → 𝑓Q)
12 breq1 3940 . . . . . . . . . . . . 13 (𝑥 = (𝑓 ·Q 𝑔) → (𝑥 <Q 𝑓 ↔ (𝑓 ·Q 𝑔) <Q 𝑓))
13123ad2ant3 1005 . . . . . . . . . . . 12 ((𝑓Q𝑔Q𝑥 = (𝑓 ·Q 𝑔)) → (𝑥 <Q 𝑓 ↔ (𝑓 ·Q 𝑔) <Q 𝑓))
14 1prl 7387 . . . . . . . . . . . . . . 15 (1st ‘1P) = {𝑔𝑔 <Q 1Q}
1514abeq2i 2251 . . . . . . . . . . . . . 14 (𝑔 ∈ (1st ‘1P) ↔ 𝑔 <Q 1Q)
16 1nq 7198 . . . . . . . . . . . . . . . . 17 1QQ
17 ltmnqg 7233 . . . . . . . . . . . . . . . . 17 ((𝑔Q ∧ 1QQ𝑓Q) → (𝑔 <Q 1Q ↔ (𝑓 ·Q 𝑔) <Q (𝑓 ·Q 1Q)))
1816, 17mp3an2 1304 . . . . . . . . . . . . . . . 16 ((𝑔Q𝑓Q) → (𝑔 <Q 1Q ↔ (𝑓 ·Q 𝑔) <Q (𝑓 ·Q 1Q)))
1918ancoms 266 . . . . . . . . . . . . . . 15 ((𝑓Q𝑔Q) → (𝑔 <Q 1Q ↔ (𝑓 ·Q 𝑔) <Q (𝑓 ·Q 1Q)))
20 mulidnq 7221 . . . . . . . . . . . . . . . . 17 (𝑓Q → (𝑓 ·Q 1Q) = 𝑓)
2120breq2d 3949 . . . . . . . . . . . . . . . 16 (𝑓Q → ((𝑓 ·Q 𝑔) <Q (𝑓 ·Q 1Q) ↔ (𝑓 ·Q 𝑔) <Q 𝑓))
2221adantr 274 . . . . . . . . . . . . . . 15 ((𝑓Q𝑔Q) → ((𝑓 ·Q 𝑔) <Q (𝑓 ·Q 1Q) ↔ (𝑓 ·Q 𝑔) <Q 𝑓))
2319, 22bitrd 187 . . . . . . . . . . . . . 14 ((𝑓Q𝑔Q) → (𝑔 <Q 1Q ↔ (𝑓 ·Q 𝑔) <Q 𝑓))
2415, 23syl5rbb 192 . . . . . . . . . . . . 13 ((𝑓Q𝑔Q) → ((𝑓 ·Q 𝑔) <Q 𝑓𝑔 ∈ (1st ‘1P)))
25243adant3 1002 . . . . . . . . . . . 12 ((𝑓Q𝑔Q𝑥 = (𝑓 ·Q 𝑔)) → ((𝑓 ·Q 𝑔) <Q 𝑓𝑔 ∈ (1st ‘1P)))
2613, 25bitrd 187 . . . . . . . . . . 11 ((𝑓Q𝑔Q𝑥 = (𝑓 ·Q 𝑔)) → (𝑥 <Q 𝑓𝑔 ∈ (1st ‘1P)))
2711, 26syl3an1 1250 . . . . . . . . . 10 (((𝐴P𝑓 ∈ (1st𝐴)) ∧ 𝑔Q𝑥 = (𝑓 ·Q 𝑔)) → (𝑥 <Q 𝑓𝑔 ∈ (1st ‘1P)))
288, 27syl3an2 1251 . . . . . . . . 9 (((𝐴P𝑓 ∈ (1st𝐴)) ∧ 𝑔 ∈ (1st ‘1P) ∧ 𝑥 = (𝑓 ·Q 𝑔)) → (𝑥 <Q 𝑓𝑔 ∈ (1st ‘1P)))
29283expia 1184 . . . . . . . 8 (((𝐴P𝑓 ∈ (1st𝐴)) ∧ 𝑔 ∈ (1st ‘1P)) → (𝑥 = (𝑓 ·Q 𝑔) → (𝑥 <Q 𝑓𝑔 ∈ (1st ‘1P))))
3029pm5.32rd 447 . . . . . . 7 (((𝐴P𝑓 ∈ (1st𝐴)) ∧ 𝑔 ∈ (1st ‘1P)) → ((𝑥 <Q 𝑓𝑥 = (𝑓 ·Q 𝑔)) ↔ (𝑔 ∈ (1st ‘1P) ∧ 𝑥 = (𝑓 ·Q 𝑔))))
3130rexbidva 2435 . . . . . 6 ((𝐴P𝑓 ∈ (1st𝐴)) → (∃𝑔 ∈ (1st ‘1P)(𝑥 <Q 𝑓𝑥 = (𝑓 ·Q 𝑔)) ↔ ∃𝑔 ∈ (1st ‘1P)(𝑔 ∈ (1st ‘1P) ∧ 𝑥 = (𝑓 ·Q 𝑔))))
32 r19.42v 2591 . . . . . 6 (∃𝑔 ∈ (1st ‘1P)(𝑥 <Q 𝑓𝑥 = (𝑓 ·Q 𝑔)) ↔ (𝑥 <Q 𝑓 ∧ ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔)))
3331, 32bitr3di 194 . . . . 5 ((𝐴P𝑓 ∈ (1st𝐴)) → (∃𝑔 ∈ (1st ‘1P)(𝑔 ∈ (1st ‘1P) ∧ 𝑥 = (𝑓 ·Q 𝑔)) ↔ (𝑥 <Q 𝑓 ∧ ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔))))
343, 33syl5bb 191 . . . 4 ((𝐴P𝑓 ∈ (1st𝐴)) → (∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔) ↔ (𝑥 <Q 𝑓 ∧ ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔))))
3534rexbidva 2435 . . 3 (𝐴P → (∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔) ↔ ∃𝑓 ∈ (1st𝐴)(𝑥 <Q 𝑓 ∧ ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔))))
36 df-imp 7301 . . . . 5 ·P = (𝑦P, 𝑧P ↦ ⟨{𝑤Q ∣ ∃𝑢Q𝑣Q (𝑢 ∈ (1st𝑦) ∧ 𝑣 ∈ (1st𝑧) ∧ 𝑤 = (𝑢 ·Q 𝑣))}, {𝑤Q ∣ ∃𝑢Q𝑣Q (𝑢 ∈ (2nd𝑦) ∧ 𝑣 ∈ (2nd𝑧) ∧ 𝑤 = (𝑢 ·Q 𝑣))}⟩)
37 mulclnq 7208 . . . . 5 ((𝑢Q𝑣Q) → (𝑢 ·Q 𝑣) ∈ Q)
3836, 37genpelvl 7344 . . . 4 ((𝐴P ∧ 1PP) → (𝑥 ∈ (1st ‘(𝐴 ·P 1P)) ↔ ∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔)))
394, 38mpan2 422 . . 3 (𝐴P → (𝑥 ∈ (1st ‘(𝐴 ·P 1P)) ↔ ∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔)))
40 prnmaxl 7320 . . . . . . 7 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑥 ∈ (1st𝐴)) → ∃𝑓 ∈ (1st𝐴)𝑥 <Q 𝑓)
419, 40sylan 281 . . . . . 6 ((𝐴P𝑥 ∈ (1st𝐴)) → ∃𝑓 ∈ (1st𝐴)𝑥 <Q 𝑓)
42 ltrelnq 7197 . . . . . . . . . . . . 13 <Q ⊆ (Q × Q)
4342brel 4599 . . . . . . . . . . . 12 (𝑥 <Q 𝑓 → (𝑥Q𝑓Q))
44 ltmnqg 7233 . . . . . . . . . . . . . . . 16 ((𝑦Q𝑧Q𝑤Q) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
4544adantl 275 . . . . . . . . . . . . . . 15 (((𝑥Q𝑓Q) ∧ (𝑦Q𝑧Q𝑤Q)) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
46 simpl 108 . . . . . . . . . . . . . . 15 ((𝑥Q𝑓Q) → 𝑥Q)
47 simpr 109 . . . . . . . . . . . . . . 15 ((𝑥Q𝑓Q) → 𝑓Q)
48 recclnq 7224 . . . . . . . . . . . . . . . 16 (𝑓Q → (*Q𝑓) ∈ Q)
4948adantl 275 . . . . . . . . . . . . . . 15 ((𝑥Q𝑓Q) → (*Q𝑓) ∈ Q)
50 mulcomnqg 7215 . . . . . . . . . . . . . . . 16 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
5150adantl 275 . . . . . . . . . . . . . . 15 (((𝑥Q𝑓Q) ∧ (𝑦Q𝑧Q)) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
5245, 46, 47, 49, 51caovord2d 5948 . . . . . . . . . . . . . 14 ((𝑥Q𝑓Q) → (𝑥 <Q 𝑓 ↔ (𝑥 ·Q (*Q𝑓)) <Q (𝑓 ·Q (*Q𝑓))))
53 recidnq 7225 . . . . . . . . . . . . . . . 16 (𝑓Q → (𝑓 ·Q (*Q𝑓)) = 1Q)
5453breq2d 3949 . . . . . . . . . . . . . . 15 (𝑓Q → ((𝑥 ·Q (*Q𝑓)) <Q (𝑓 ·Q (*Q𝑓)) ↔ (𝑥 ·Q (*Q𝑓)) <Q 1Q))
5554adantl 275 . . . . . . . . . . . . . 14 ((𝑥Q𝑓Q) → ((𝑥 ·Q (*Q𝑓)) <Q (𝑓 ·Q (*Q𝑓)) ↔ (𝑥 ·Q (*Q𝑓)) <Q 1Q))
5652, 55bitrd 187 . . . . . . . . . . . . 13 ((𝑥Q𝑓Q) → (𝑥 <Q 𝑓 ↔ (𝑥 ·Q (*Q𝑓)) <Q 1Q))
5756biimpd 143 . . . . . . . . . . . 12 ((𝑥Q𝑓Q) → (𝑥 <Q 𝑓 → (𝑥 ·Q (*Q𝑓)) <Q 1Q))
5843, 57mpcom 36 . . . . . . . . . . 11 (𝑥 <Q 𝑓 → (𝑥 ·Q (*Q𝑓)) <Q 1Q)
59 mulclnq 7208 . . . . . . . . . . . . . 14 ((𝑥Q ∧ (*Q𝑓) ∈ Q) → (𝑥 ·Q (*Q𝑓)) ∈ Q)
6048, 59sylan2 284 . . . . . . . . . . . . 13 ((𝑥Q𝑓Q) → (𝑥 ·Q (*Q𝑓)) ∈ Q)
6143, 60syl 14 . . . . . . . . . . . 12 (𝑥 <Q 𝑓 → (𝑥 ·Q (*Q𝑓)) ∈ Q)
62 breq1 3940 . . . . . . . . . . . . 13 (𝑔 = (𝑥 ·Q (*Q𝑓)) → (𝑔 <Q 1Q ↔ (𝑥 ·Q (*Q𝑓)) <Q 1Q))
6362, 14elab2g 2835 . . . . . . . . . . . 12 ((𝑥 ·Q (*Q𝑓)) ∈ Q → ((𝑥 ·Q (*Q𝑓)) ∈ (1st ‘1P) ↔ (𝑥 ·Q (*Q𝑓)) <Q 1Q))
6461, 63syl 14 . . . . . . . . . . 11 (𝑥 <Q 𝑓 → ((𝑥 ·Q (*Q𝑓)) ∈ (1st ‘1P) ↔ (𝑥 ·Q (*Q𝑓)) <Q 1Q))
6558, 64mpbird 166 . . . . . . . . . 10 (𝑥 <Q 𝑓 → (𝑥 ·Q (*Q𝑓)) ∈ (1st ‘1P))
66 mulassnqg 7216 . . . . . . . . . . . . . 14 ((𝑦Q𝑧Q𝑤Q) → ((𝑦 ·Q 𝑧) ·Q 𝑤) = (𝑦 ·Q (𝑧 ·Q 𝑤)))
6766adantl 275 . . . . . . . . . . . . 13 (((𝑥Q𝑓Q) ∧ (𝑦Q𝑧Q𝑤Q)) → ((𝑦 ·Q 𝑧) ·Q 𝑤) = (𝑦 ·Q (𝑧 ·Q 𝑤)))
6847, 46, 49, 51, 67caov12d 5960 . . . . . . . . . . . 12 ((𝑥Q𝑓Q) → (𝑓 ·Q (𝑥 ·Q (*Q𝑓))) = (𝑥 ·Q (𝑓 ·Q (*Q𝑓))))
6953oveq2d 5798 . . . . . . . . . . . . 13 (𝑓Q → (𝑥 ·Q (𝑓 ·Q (*Q𝑓))) = (𝑥 ·Q 1Q))
7069adantl 275 . . . . . . . . . . . 12 ((𝑥Q𝑓Q) → (𝑥 ·Q (𝑓 ·Q (*Q𝑓))) = (𝑥 ·Q 1Q))
71 mulidnq 7221 . . . . . . . . . . . . 13 (𝑥Q → (𝑥 ·Q 1Q) = 𝑥)
7271adantr 274 . . . . . . . . . . . 12 ((𝑥Q𝑓Q) → (𝑥 ·Q 1Q) = 𝑥)
7368, 70, 723eqtrrd 2178 . . . . . . . . . . 11 ((𝑥Q𝑓Q) → 𝑥 = (𝑓 ·Q (𝑥 ·Q (*Q𝑓))))
7443, 73syl 14 . . . . . . . . . 10 (𝑥 <Q 𝑓𝑥 = (𝑓 ·Q (𝑥 ·Q (*Q𝑓))))
75 oveq2 5790 . . . . . . . . . . . 12 (𝑔 = (𝑥 ·Q (*Q𝑓)) → (𝑓 ·Q 𝑔) = (𝑓 ·Q (𝑥 ·Q (*Q𝑓))))
7675eqeq2d 2152 . . . . . . . . . . 11 (𝑔 = (𝑥 ·Q (*Q𝑓)) → (𝑥 = (𝑓 ·Q 𝑔) ↔ 𝑥 = (𝑓 ·Q (𝑥 ·Q (*Q𝑓)))))
7776rspcev 2793 . . . . . . . . . 10 (((𝑥 ·Q (*Q𝑓)) ∈ (1st ‘1P) ∧ 𝑥 = (𝑓 ·Q (𝑥 ·Q (*Q𝑓)))) → ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔))
7865, 74, 77syl2anc 409 . . . . . . . . 9 (𝑥 <Q 𝑓 → ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔))
7978a1i 9 . . . . . . . 8 (𝑓 ∈ (1st𝐴) → (𝑥 <Q 𝑓 → ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔)))
8079ancld 323 . . . . . . 7 (𝑓 ∈ (1st𝐴) → (𝑥 <Q 𝑓 → (𝑥 <Q 𝑓 ∧ ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔))))
8180reximia 2530 . . . . . 6 (∃𝑓 ∈ (1st𝐴)𝑥 <Q 𝑓 → ∃𝑓 ∈ (1st𝐴)(𝑥 <Q 𝑓 ∧ ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔)))
8241, 81syl 14 . . . . 5 ((𝐴P𝑥 ∈ (1st𝐴)) → ∃𝑓 ∈ (1st𝐴)(𝑥 <Q 𝑓 ∧ ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔)))
8382ex 114 . . . 4 (𝐴P → (𝑥 ∈ (1st𝐴) → ∃𝑓 ∈ (1st𝐴)(𝑥 <Q 𝑓 ∧ ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔))))
84 prcdnql 7316 . . . . . . 7 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑓 ∈ (1st𝐴)) → (𝑥 <Q 𝑓𝑥 ∈ (1st𝐴)))
859, 84sylan 281 . . . . . 6 ((𝐴P𝑓 ∈ (1st𝐴)) → (𝑥 <Q 𝑓𝑥 ∈ (1st𝐴)))
8685adantrd 277 . . . . 5 ((𝐴P𝑓 ∈ (1st𝐴)) → ((𝑥 <Q 𝑓 ∧ ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔)) → 𝑥 ∈ (1st𝐴)))
8786rexlimdva 2552 . . . 4 (𝐴P → (∃𝑓 ∈ (1st𝐴)(𝑥 <Q 𝑓 ∧ ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔)) → 𝑥 ∈ (1st𝐴)))
8883, 87impbid 128 . . 3 (𝐴P → (𝑥 ∈ (1st𝐴) ↔ ∃𝑓 ∈ (1st𝐴)(𝑥 <Q 𝑓 ∧ ∃𝑔 ∈ (1st ‘1P)𝑥 = (𝑓 ·Q 𝑔))))
8935, 39, 883bitr4d 219 . 2 (𝐴P → (𝑥 ∈ (1st ‘(𝐴 ·P 1P)) ↔ 𝑥 ∈ (1st𝐴)))
9089eqrdv 2138 1 (𝐴P → (1st ‘(𝐴 ·P 1P)) = (1st𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481  wrex 2418  wss 3076  cop 3535   class class class wbr 3937  cfv 5131  (class class class)co 5782  1st c1st 6044  2nd c2nd 6045  Qcnq 7112  1Qc1q 7113   ·Q cmq 7115  *Qcrq 7116   <Q cltq 7117  Pcnp 7123  1Pc1p 7124   ·P cmp 7126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-inp 7298  df-i1p 7299  df-imp 7301
This theorem is referenced by:  1idpr  7424
  Copyright terms: Public domain W3C validator