ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1idpru GIF version

Theorem 1idpru 7300
Description: Lemma for 1idpr 7301. (Contributed by Jim Kingdon, 13-Dec-2019.)
Assertion
Ref Expression
1idpru (𝐴P → (2nd ‘(𝐴 ·P 1P)) = (2nd𝐴))

Proof of Theorem 1idpru
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3067 . . . . . 6 (2nd ‘1P) ⊆ (2nd ‘1P)
2 rexss 3111 . . . . . 6 ((2nd ‘1P) ⊆ (2nd ‘1P) → (∃ ∈ (2nd ‘1P)𝑥 = (𝑓 ·Q ) ↔ ∃ ∈ (2nd ‘1P)( ∈ (2nd ‘1P) ∧ 𝑥 = (𝑓 ·Q ))))
31, 2ax-mp 7 . . . . 5 (∃ ∈ (2nd ‘1P)𝑥 = (𝑓 ·Q ) ↔ ∃ ∈ (2nd ‘1P)( ∈ (2nd ‘1P) ∧ 𝑥 = (𝑓 ·Q )))
4 r19.42v 2546 . . . . . 6 (∃ ∈ (2nd ‘1P)(𝑓 <Q 𝑥𝑥 = (𝑓 ·Q )) ↔ (𝑓 <Q 𝑥 ∧ ∃ ∈ (2nd ‘1P)𝑥 = (𝑓 ·Q )))
5 1pr 7263 . . . . . . . . . . 11 1PP
6 prop 7184 . . . . . . . . . . . 12 (1PP → ⟨(1st ‘1P), (2nd ‘1P)⟩ ∈ P)
7 elprnqu 7191 . . . . . . . . . . . 12 ((⟨(1st ‘1P), (2nd ‘1P)⟩ ∈ P ∈ (2nd ‘1P)) → Q)
86, 7sylan 279 . . . . . . . . . . 11 ((1PP ∈ (2nd ‘1P)) → Q)
95, 8mpan 418 . . . . . . . . . 10 ( ∈ (2nd ‘1P) → Q)
10 prop 7184 . . . . . . . . . . . 12 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
11 elprnqu 7191 . . . . . . . . . . . 12 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑓 ∈ (2nd𝐴)) → 𝑓Q)
1210, 11sylan 279 . . . . . . . . . . 11 ((𝐴P𝑓 ∈ (2nd𝐴)) → 𝑓Q)
13 breq2 3879 . . . . . . . . . . . . 13 (𝑥 = (𝑓 ·Q ) → (𝑓 <Q 𝑥𝑓 <Q (𝑓 ·Q )))
14133ad2ant3 972 . . . . . . . . . . . 12 ((𝑓QQ𝑥 = (𝑓 ·Q )) → (𝑓 <Q 𝑥𝑓 <Q (𝑓 ·Q )))
15 1pru 7265 . . . . . . . . . . . . . . 15 (2nd ‘1P) = { ∣ 1Q <Q }
1615abeq2i 2210 . . . . . . . . . . . . . 14 ( ∈ (2nd ‘1P) ↔ 1Q <Q )
17 1nq 7075 . . . . . . . . . . . . . . . . 17 1QQ
18 ltmnqg 7110 . . . . . . . . . . . . . . . . 17 ((1QQQ𝑓Q) → (1Q <Q ↔ (𝑓 ·Q 1Q) <Q (𝑓 ·Q )))
1917, 18mp3an1 1270 . . . . . . . . . . . . . . . 16 ((Q𝑓Q) → (1Q <Q ↔ (𝑓 ·Q 1Q) <Q (𝑓 ·Q )))
2019ancoms 266 . . . . . . . . . . . . . . 15 ((𝑓QQ) → (1Q <Q ↔ (𝑓 ·Q 1Q) <Q (𝑓 ·Q )))
21 mulidnq 7098 . . . . . . . . . . . . . . . . 17 (𝑓Q → (𝑓 ·Q 1Q) = 𝑓)
2221breq1d 3885 . . . . . . . . . . . . . . . 16 (𝑓Q → ((𝑓 ·Q 1Q) <Q (𝑓 ·Q ) ↔ 𝑓 <Q (𝑓 ·Q )))
2322adantr 272 . . . . . . . . . . . . . . 15 ((𝑓QQ) → ((𝑓 ·Q 1Q) <Q (𝑓 ·Q ) ↔ 𝑓 <Q (𝑓 ·Q )))
2420, 23bitrd 187 . . . . . . . . . . . . . 14 ((𝑓QQ) → (1Q <Q 𝑓 <Q (𝑓 ·Q )))
2516, 24syl5rbb 192 . . . . . . . . . . . . 13 ((𝑓QQ) → (𝑓 <Q (𝑓 ·Q ) ↔ ∈ (2nd ‘1P)))
26253adant3 969 . . . . . . . . . . . 12 ((𝑓QQ𝑥 = (𝑓 ·Q )) → (𝑓 <Q (𝑓 ·Q ) ↔ ∈ (2nd ‘1P)))
2714, 26bitrd 187 . . . . . . . . . . 11 ((𝑓QQ𝑥 = (𝑓 ·Q )) → (𝑓 <Q 𝑥 ∈ (2nd ‘1P)))
2812, 27syl3an1 1217 . . . . . . . . . 10 (((𝐴P𝑓 ∈ (2nd𝐴)) ∧ Q𝑥 = (𝑓 ·Q )) → (𝑓 <Q 𝑥 ∈ (2nd ‘1P)))
299, 28syl3an2 1218 . . . . . . . . 9 (((𝐴P𝑓 ∈ (2nd𝐴)) ∧ ∈ (2nd ‘1P) ∧ 𝑥 = (𝑓 ·Q )) → (𝑓 <Q 𝑥 ∈ (2nd ‘1P)))
30293expia 1151 . . . . . . . 8 (((𝐴P𝑓 ∈ (2nd𝐴)) ∧ ∈ (2nd ‘1P)) → (𝑥 = (𝑓 ·Q ) → (𝑓 <Q 𝑥 ∈ (2nd ‘1P))))
3130pm5.32rd 442 . . . . . . 7 (((𝐴P𝑓 ∈ (2nd𝐴)) ∧ ∈ (2nd ‘1P)) → ((𝑓 <Q 𝑥𝑥 = (𝑓 ·Q )) ↔ ( ∈ (2nd ‘1P) ∧ 𝑥 = (𝑓 ·Q ))))
3231rexbidva 2393 . . . . . 6 ((𝐴P𝑓 ∈ (2nd𝐴)) → (∃ ∈ (2nd ‘1P)(𝑓 <Q 𝑥𝑥 = (𝑓 ·Q )) ↔ ∃ ∈ (2nd ‘1P)( ∈ (2nd ‘1P) ∧ 𝑥 = (𝑓 ·Q ))))
334, 32syl5rbbr 194 . . . . 5 ((𝐴P𝑓 ∈ (2nd𝐴)) → (∃ ∈ (2nd ‘1P)( ∈ (2nd ‘1P) ∧ 𝑥 = (𝑓 ·Q )) ↔ (𝑓 <Q 𝑥 ∧ ∃ ∈ (2nd ‘1P)𝑥 = (𝑓 ·Q ))))
343, 33syl5bb 191 . . . 4 ((𝐴P𝑓 ∈ (2nd𝐴)) → (∃ ∈ (2nd ‘1P)𝑥 = (𝑓 ·Q ) ↔ (𝑓 <Q 𝑥 ∧ ∃ ∈ (2nd ‘1P)𝑥 = (𝑓 ·Q ))))
3534rexbidva 2393 . . 3 (𝐴P → (∃𝑓 ∈ (2nd𝐴)∃ ∈ (2nd ‘1P)𝑥 = (𝑓 ·Q ) ↔ ∃𝑓 ∈ (2nd𝐴)(𝑓 <Q 𝑥 ∧ ∃ ∈ (2nd ‘1P)𝑥 = (𝑓 ·Q ))))
36 df-imp 7178 . . . . 5 ·P = (𝑦P, 𝑧P ↦ ⟨{𝑤Q ∣ ∃𝑢Q𝑣Q (𝑢 ∈ (1st𝑦) ∧ 𝑣 ∈ (1st𝑧) ∧ 𝑤 = (𝑢 ·Q 𝑣))}, {𝑤Q ∣ ∃𝑢Q𝑣Q (𝑢 ∈ (2nd𝑦) ∧ 𝑣 ∈ (2nd𝑧) ∧ 𝑤 = (𝑢 ·Q 𝑣))}⟩)
37 mulclnq 7085 . . . . 5 ((𝑢Q𝑣Q) → (𝑢 ·Q 𝑣) ∈ Q)
3836, 37genpelvu 7222 . . . 4 ((𝐴P ∧ 1PP) → (𝑥 ∈ (2nd ‘(𝐴 ·P 1P)) ↔ ∃𝑓 ∈ (2nd𝐴)∃ ∈ (2nd ‘1P)𝑥 = (𝑓 ·Q )))
395, 38mpan2 419 . . 3 (𝐴P → (𝑥 ∈ (2nd ‘(𝐴 ·P 1P)) ↔ ∃𝑓 ∈ (2nd𝐴)∃ ∈ (2nd ‘1P)𝑥 = (𝑓 ·Q )))
40 prnminu 7198 . . . . . . 7 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑥 ∈ (2nd𝐴)) → ∃𝑓 ∈ (2nd𝐴)𝑓 <Q 𝑥)
4110, 40sylan 279 . . . . . 6 ((𝐴P𝑥 ∈ (2nd𝐴)) → ∃𝑓 ∈ (2nd𝐴)𝑓 <Q 𝑥)
42 ltrelnq 7074 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
4342brel 4529 . . . . . . . . . . . . 13 (𝑓 <Q 𝑥 → (𝑓Q𝑥Q))
4443ancomd 265 . . . . . . . . . . . 12 (𝑓 <Q 𝑥 → (𝑥Q𝑓Q))
45 ltmnqg 7110 . . . . . . . . . . . . . . . 16 ((𝑦Q𝑧Q𝑤Q) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
4645adantl 273 . . . . . . . . . . . . . . 15 (((𝑥Q𝑓Q) ∧ (𝑦Q𝑧Q𝑤Q)) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
47 simpr 109 . . . . . . . . . . . . . . 15 ((𝑥Q𝑓Q) → 𝑓Q)
48 simpl 108 . . . . . . . . . . . . . . 15 ((𝑥Q𝑓Q) → 𝑥Q)
49 recclnq 7101 . . . . . . . . . . . . . . . 16 (𝑓Q → (*Q𝑓) ∈ Q)
5049adantl 273 . . . . . . . . . . . . . . 15 ((𝑥Q𝑓Q) → (*Q𝑓) ∈ Q)
51 mulcomnqg 7092 . . . . . . . . . . . . . . . 16 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
5251adantl 273 . . . . . . . . . . . . . . 15 (((𝑥Q𝑓Q) ∧ (𝑦Q𝑧Q)) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
5346, 47, 48, 50, 52caovord2d 5872 . . . . . . . . . . . . . 14 ((𝑥Q𝑓Q) → (𝑓 <Q 𝑥 ↔ (𝑓 ·Q (*Q𝑓)) <Q (𝑥 ·Q (*Q𝑓))))
54 recidnq 7102 . . . . . . . . . . . . . . . 16 (𝑓Q → (𝑓 ·Q (*Q𝑓)) = 1Q)
5554breq1d 3885 . . . . . . . . . . . . . . 15 (𝑓Q → ((𝑓 ·Q (*Q𝑓)) <Q (𝑥 ·Q (*Q𝑓)) ↔ 1Q <Q (𝑥 ·Q (*Q𝑓))))
5655adantl 273 . . . . . . . . . . . . . 14 ((𝑥Q𝑓Q) → ((𝑓 ·Q (*Q𝑓)) <Q (𝑥 ·Q (*Q𝑓)) ↔ 1Q <Q (𝑥 ·Q (*Q𝑓))))
5753, 56bitrd 187 . . . . . . . . . . . . 13 ((𝑥Q𝑓Q) → (𝑓 <Q 𝑥 ↔ 1Q <Q (𝑥 ·Q (*Q𝑓))))
5857biimpd 143 . . . . . . . . . . . 12 ((𝑥Q𝑓Q) → (𝑓 <Q 𝑥 → 1Q <Q (𝑥 ·Q (*Q𝑓))))
5944, 58mpcom 36 . . . . . . . . . . 11 (𝑓 <Q 𝑥 → 1Q <Q (𝑥 ·Q (*Q𝑓)))
60 mulclnq 7085 . . . . . . . . . . . . 13 ((𝑥Q ∧ (*Q𝑓) ∈ Q) → (𝑥 ·Q (*Q𝑓)) ∈ Q)
6149, 60sylan2 282 . . . . . . . . . . . 12 ((𝑥Q𝑓Q) → (𝑥 ·Q (*Q𝑓)) ∈ Q)
62 breq2 3879 . . . . . . . . . . . . 13 ( = (𝑥 ·Q (*Q𝑓)) → (1Q <Q ↔ 1Q <Q (𝑥 ·Q (*Q𝑓))))
6362, 15elab2g 2784 . . . . . . . . . . . 12 ((𝑥 ·Q (*Q𝑓)) ∈ Q → ((𝑥 ·Q (*Q𝑓)) ∈ (2nd ‘1P) ↔ 1Q <Q (𝑥 ·Q (*Q𝑓))))
6444, 61, 633syl 17 . . . . . . . . . . 11 (𝑓 <Q 𝑥 → ((𝑥 ·Q (*Q𝑓)) ∈ (2nd ‘1P) ↔ 1Q <Q (𝑥 ·Q (*Q𝑓))))
6559, 64mpbird 166 . . . . . . . . . 10 (𝑓 <Q 𝑥 → (𝑥 ·Q (*Q𝑓)) ∈ (2nd ‘1P))
66 mulassnqg 7093 . . . . . . . . . . . . . 14 ((𝑦Q𝑧Q𝑤Q) → ((𝑦 ·Q 𝑧) ·Q 𝑤) = (𝑦 ·Q (𝑧 ·Q 𝑤)))
6766adantl 273 . . . . . . . . . . . . 13 (((𝑥Q𝑓Q) ∧ (𝑦Q𝑧Q𝑤Q)) → ((𝑦 ·Q 𝑧) ·Q 𝑤) = (𝑦 ·Q (𝑧 ·Q 𝑤)))
6847, 48, 50, 52, 67caov12d 5884 . . . . . . . . . . . 12 ((𝑥Q𝑓Q) → (𝑓 ·Q (𝑥 ·Q (*Q𝑓))) = (𝑥 ·Q (𝑓 ·Q (*Q𝑓))))
6954oveq2d 5722 . . . . . . . . . . . . 13 (𝑓Q → (𝑥 ·Q (𝑓 ·Q (*Q𝑓))) = (𝑥 ·Q 1Q))
7069adantl 273 . . . . . . . . . . . 12 ((𝑥Q𝑓Q) → (𝑥 ·Q (𝑓 ·Q (*Q𝑓))) = (𝑥 ·Q 1Q))
71 mulidnq 7098 . . . . . . . . . . . . 13 (𝑥Q → (𝑥 ·Q 1Q) = 𝑥)
7271adantr 272 . . . . . . . . . . . 12 ((𝑥Q𝑓Q) → (𝑥 ·Q 1Q) = 𝑥)
7368, 70, 723eqtrrd 2137 . . . . . . . . . . 11 ((𝑥Q𝑓Q) → 𝑥 = (𝑓 ·Q (𝑥 ·Q (*Q𝑓))))
7444, 73syl 14 . . . . . . . . . 10 (𝑓 <Q 𝑥𝑥 = (𝑓 ·Q (𝑥 ·Q (*Q𝑓))))
75 oveq2 5714 . . . . . . . . . . . 12 ( = (𝑥 ·Q (*Q𝑓)) → (𝑓 ·Q ) = (𝑓 ·Q (𝑥 ·Q (*Q𝑓))))
7675eqeq2d 2111 . . . . . . . . . . 11 ( = (𝑥 ·Q (*Q𝑓)) → (𝑥 = (𝑓 ·Q ) ↔ 𝑥 = (𝑓 ·Q (𝑥 ·Q (*Q𝑓)))))
7776rspcev 2744 . . . . . . . . . 10 (((𝑥 ·Q (*Q𝑓)) ∈ (2nd ‘1P) ∧ 𝑥 = (𝑓 ·Q (𝑥 ·Q (*Q𝑓)))) → ∃ ∈ (2nd ‘1P)𝑥 = (𝑓 ·Q ))
7865, 74, 77syl2anc 406 . . . . . . . . 9 (𝑓 <Q 𝑥 → ∃ ∈ (2nd ‘1P)𝑥 = (𝑓 ·Q ))
7978a1i 9 . . . . . . . 8 (𝑓 ∈ (2nd𝐴) → (𝑓 <Q 𝑥 → ∃ ∈ (2nd ‘1P)𝑥 = (𝑓 ·Q )))
8079ancld 321 . . . . . . 7 (𝑓 ∈ (2nd𝐴) → (𝑓 <Q 𝑥 → (𝑓 <Q 𝑥 ∧ ∃ ∈ (2nd ‘1P)𝑥 = (𝑓 ·Q ))))
8180reximia 2486 . . . . . 6 (∃𝑓 ∈ (2nd𝐴)𝑓 <Q 𝑥 → ∃𝑓 ∈ (2nd𝐴)(𝑓 <Q 𝑥 ∧ ∃ ∈ (2nd ‘1P)𝑥 = (𝑓 ·Q )))
8241, 81syl 14 . . . . 5 ((𝐴P𝑥 ∈ (2nd𝐴)) → ∃𝑓 ∈ (2nd𝐴)(𝑓 <Q 𝑥 ∧ ∃ ∈ (2nd ‘1P)𝑥 = (𝑓 ·Q )))
8382ex 114 . . . 4 (𝐴P → (𝑥 ∈ (2nd𝐴) → ∃𝑓 ∈ (2nd𝐴)(𝑓 <Q 𝑥 ∧ ∃ ∈ (2nd ‘1P)𝑥 = (𝑓 ·Q ))))
84 prcunqu 7194 . . . . . . 7 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑓 ∈ (2nd𝐴)) → (𝑓 <Q 𝑥𝑥 ∈ (2nd𝐴)))
8510, 84sylan 279 . . . . . 6 ((𝐴P𝑓 ∈ (2nd𝐴)) → (𝑓 <Q 𝑥𝑥 ∈ (2nd𝐴)))
8685adantrd 275 . . . . 5 ((𝐴P𝑓 ∈ (2nd𝐴)) → ((𝑓 <Q 𝑥 ∧ ∃ ∈ (2nd ‘1P)𝑥 = (𝑓 ·Q )) → 𝑥 ∈ (2nd𝐴)))
8786rexlimdva 2508 . . . 4 (𝐴P → (∃𝑓 ∈ (2nd𝐴)(𝑓 <Q 𝑥 ∧ ∃ ∈ (2nd ‘1P)𝑥 = (𝑓 ·Q )) → 𝑥 ∈ (2nd𝐴)))
8883, 87impbid 128 . . 3 (𝐴P → (𝑥 ∈ (2nd𝐴) ↔ ∃𝑓 ∈ (2nd𝐴)(𝑓 <Q 𝑥 ∧ ∃ ∈ (2nd ‘1P)𝑥 = (𝑓 ·Q ))))
8935, 39, 883bitr4d 219 . 2 (𝐴P → (𝑥 ∈ (2nd ‘(𝐴 ·P 1P)) ↔ 𝑥 ∈ (2nd𝐴)))
9089eqrdv 2098 1 (𝐴P → (2nd ‘(𝐴 ·P 1P)) = (2nd𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 930   = wceq 1299  wcel 1448  wrex 2376  wss 3021  cop 3477   class class class wbr 3875  cfv 5059  (class class class)co 5706  1st c1st 5967  2nd c2nd 5968  Qcnq 6989  1Qc1q 6990   ·Q cmq 6992  *Qcrq 6993   <Q cltq 6994  Pcnp 7000  1Pc1p 7001   ·P cmp 7003
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-eprel 4149  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-1o 6243  df-oadd 6247  df-omul 6248  df-er 6359  df-ec 6361  df-qs 6365  df-ni 7013  df-pli 7014  df-mi 7015  df-lti 7016  df-plpq 7053  df-mpq 7054  df-enq 7056  df-nqqs 7057  df-plqqs 7058  df-mqqs 7059  df-1nqqs 7060  df-rq 7061  df-ltnqqs 7062  df-inp 7175  df-i1p 7176  df-imp 7178
This theorem is referenced by:  1idpr  7301
  Copyright terms: Public domain W3C validator