ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caubnd2 GIF version

Theorem caubnd2 11081
Description: A Cauchy sequence of complex numbers is eventually bounded. (Contributed by Mario Carneiro, 14-Feb-2014.)
Hypothesis
Ref Expression
cau3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
caubnd2 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
Distinct variable groups:   𝑗,𝑘,𝑥,𝑦,𝐹   𝑗,𝑀,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥,𝑦
Allowed substitution hint:   𝑀(𝑦)

Proof of Theorem caubnd2
StepHypRef Expression
1 1rp 9614 . . 3 1 ∈ ℝ+
2 breq2 3993 . . . . . 6 (𝑥 = 1 → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1))
32anbi2d 461 . . . . 5 (𝑥 = 1 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)))
43rexralbidv 2496 . . . 4 (𝑥 = 1 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)))
54rspcv 2830 . . 3 (1 ∈ ℝ+ → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)))
61, 5ax-mp 5 . 2 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1))
7 eluzelz 9496 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
8 cau3.1 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
97, 8eleq2s 2265 . . . . . . . . . 10 (𝑗𝑍𝑗 ∈ ℤ)
10 uzid 9501 . . . . . . . . . 10 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
119, 10syl 14 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
12 simpl 108 . . . . . . . . . 10 (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → (𝐹𝑘) ∈ ℂ)
1312ralimi 2533 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
14 fveq2 5496 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1514eleq1d 2239 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
1615rspcva 2832 . . . . . . . . 9 ((𝑗 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ) → (𝐹𝑗) ∈ ℂ)
1711, 13, 16syl2an 287 . . . . . . . 8 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → (𝐹𝑗) ∈ ℂ)
18 abscl 11015 . . . . . . . 8 ((𝐹𝑗) ∈ ℂ → (abs‘(𝐹𝑗)) ∈ ℝ)
1917, 18syl 14 . . . . . . 7 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → (abs‘(𝐹𝑗)) ∈ ℝ)
20 1re 7919 . . . . . . 7 1 ∈ ℝ
21 readdcl 7900 . . . . . . 7 (((abs‘(𝐹𝑗)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(𝐹𝑗)) + 1) ∈ ℝ)
2219, 20, 21sylancl 411 . . . . . 6 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → ((abs‘(𝐹𝑗)) + 1) ∈ ℝ)
23 simpr 109 . . . . . . . . . . . . 13 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (𝐹𝑘) ∈ ℂ)
24 simplr 525 . . . . . . . . . . . . 13 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (𝐹𝑗) ∈ ℂ)
25 abs2dif 11070 . . . . . . . . . . . . 13 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
2623, 24, 25syl2anc 409 . . . . . . . . . . . 12 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
27 abscl 11015 . . . . . . . . . . . . . . 15 ((𝐹𝑘) ∈ ℂ → (abs‘(𝐹𝑘)) ∈ ℝ)
2823, 27syl 14 . . . . . . . . . . . . . 14 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘(𝐹𝑘)) ∈ ℝ)
2924, 18syl 14 . . . . . . . . . . . . . 14 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘(𝐹𝑗)) ∈ ℝ)
3028, 29resubcld 8300 . . . . . . . . . . . . 13 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ∈ ℝ)
3123, 24subcld 8230 . . . . . . . . . . . . . 14 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ)
32 abscl 11015 . . . . . . . . . . . . . 14 (((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ → (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ)
3331, 32syl 14 . . . . . . . . . . . . 13 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ)
34 lelttr 8008 . . . . . . . . . . . . . 14 ((((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ ∧ 1 ∈ ℝ) → ((((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1))
3520, 34mp3an3 1321 . . . . . . . . . . . . 13 ((((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ) → ((((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1))
3630, 33, 35syl2anc 409 . . . . . . . . . . . 12 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1))
3726, 36mpand 427 . . . . . . . . . . 11 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 1 → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1))
38 ltsubadd2 8352 . . . . . . . . . . . . 13 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ (abs‘(𝐹𝑗)) ∈ ℝ ∧ 1 ∈ ℝ) → (((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1 ↔ (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
3920, 38mp3an3 1321 . . . . . . . . . . . 12 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ (abs‘(𝐹𝑗)) ∈ ℝ) → (((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1 ↔ (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4028, 29, 39syl2anc 409 . . . . . . . . . . 11 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1 ↔ (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4137, 40sylibd 148 . . . . . . . . . 10 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 1 → (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4241expimpd 361 . . . . . . . . 9 ((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4342ralimdv 2538 . . . . . . . 8 ((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4443impancom 258 . . . . . . 7 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → ((𝐹𝑗) ∈ ℂ → ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4517, 44mpd 13 . . . . . 6 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1))
46 breq2 3993 . . . . . . . 8 (𝑦 = ((abs‘(𝐹𝑗)) + 1) → ((abs‘(𝐹𝑘)) < 𝑦 ↔ (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4746ralbidv 2470 . . . . . . 7 (𝑦 = ((abs‘(𝐹𝑗)) + 1) → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4847rspcev 2834 . . . . . 6 ((((abs‘(𝐹𝑗)) + 1) ∈ ℝ ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
4922, 45, 48syl2anc 409 . . . . 5 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
5049ex 114 . . . 4 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦))
5150reximia 2565 . . 3 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ∃𝑗𝑍𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
52 rexcom 2634 . . 3 (∃𝑗𝑍𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦 ↔ ∃𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
5351, 52sylib 121 . 2 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ∃𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
546, 53syl 14 1 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wral 2448  wrex 2449   class class class wbr 3989  cfv 5198  (class class class)co 5853  cc 7772  cr 7773  1c1 7775   + caddc 7777   < clt 7954  cle 7955  cmin 8090  cz 9212  cuz 9487  +crp 9610  abscabs 10961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator