Proof of Theorem caubnd2
Step | Hyp | Ref
| Expression |
1 | | 1rp 9614 |
. . 3
⊢ 1 ∈
ℝ+ |
2 | | breq2 3993 |
. . . . . 6
⊢ (𝑥 = 1 → ((abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥 ↔ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 1)) |
3 | 2 | anbi2d 461 |
. . . . 5
⊢ (𝑥 = 1 → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 1))) |
4 | 3 | rexralbidv 2496 |
. . . 4
⊢ (𝑥 = 1 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 1))) |
5 | 4 | rspcv 2830 |
. . 3
⊢ (1 ∈
ℝ+ → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 1))) |
6 | 1, 5 | ax-mp 5 |
. 2
⊢
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 1)) |
7 | | eluzelz 9496 |
. . . . . . . . . . 11
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ ℤ) |
8 | | cau3.1 |
. . . . . . . . . . 11
⊢ 𝑍 =
(ℤ≥‘𝑀) |
9 | 7, 8 | eleq2s 2265 |
. . . . . . . . . 10
⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ) |
10 | | uzid 9501 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
(ℤ≥‘𝑗)) |
11 | 9, 10 | syl 14 |
. . . . . . . . 9
⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ (ℤ≥‘𝑗)) |
12 | | simpl 108 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 1) → (𝐹‘𝑘) ∈ ℂ) |
13 | 12 | ralimi 2533 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 1) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ ℂ) |
14 | | fveq2 5496 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) |
15 | 14 | eleq1d 2239 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑗) ∈ ℂ)) |
16 | 15 | rspcva 2832 |
. . . . . . . . 9
⊢ ((𝑗 ∈
(ℤ≥‘𝑗) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ ℂ) → (𝐹‘𝑗) ∈ ℂ) |
17 | 11, 13, 16 | syl2an 287 |
. . . . . . . 8
⊢ ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 1)) → (𝐹‘𝑗) ∈ ℂ) |
18 | | abscl 11015 |
. . . . . . . 8
⊢ ((𝐹‘𝑗) ∈ ℂ → (abs‘(𝐹‘𝑗)) ∈ ℝ) |
19 | 17, 18 | syl 14 |
. . . . . . 7
⊢ ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 1)) → (abs‘(𝐹‘𝑗)) ∈ ℝ) |
20 | | 1re 7919 |
. . . . . . 7
⊢ 1 ∈
ℝ |
21 | | readdcl 7900 |
. . . . . . 7
⊢
(((abs‘(𝐹‘𝑗)) ∈ ℝ ∧ 1 ∈ ℝ)
→ ((abs‘(𝐹‘𝑗)) + 1) ∈ ℝ) |
22 | 19, 20, 21 | sylancl 411 |
. . . . . 6
⊢ ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 1)) → ((abs‘(𝐹‘𝑗)) + 1) ∈ ℝ) |
23 | | simpr 109 |
. . . . . . . . . . . . 13
⊢ (((𝑗 ∈ 𝑍 ∧ (𝐹‘𝑗) ∈ ℂ) ∧ (𝐹‘𝑘) ∈ ℂ) → (𝐹‘𝑘) ∈ ℂ) |
24 | | simplr 525 |
. . . . . . . . . . . . 13
⊢ (((𝑗 ∈ 𝑍 ∧ (𝐹‘𝑗) ∈ ℂ) ∧ (𝐹‘𝑘) ∈ ℂ) → (𝐹‘𝑗) ∈ ℂ) |
25 | | abs2dif 11070 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → ((abs‘(𝐹‘𝑘)) − (abs‘(𝐹‘𝑗))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
26 | 23, 24, 25 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ (((𝑗 ∈ 𝑍 ∧ (𝐹‘𝑗) ∈ ℂ) ∧ (𝐹‘𝑘) ∈ ℂ) → ((abs‘(𝐹‘𝑘)) − (abs‘(𝐹‘𝑗))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
27 | | abscl 11015 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑘) ∈ ℂ → (abs‘(𝐹‘𝑘)) ∈ ℝ) |
28 | 23, 27 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (((𝑗 ∈ 𝑍 ∧ (𝐹‘𝑗) ∈ ℂ) ∧ (𝐹‘𝑘) ∈ ℂ) → (abs‘(𝐹‘𝑘)) ∈ ℝ) |
29 | 24, 18 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (((𝑗 ∈ 𝑍 ∧ (𝐹‘𝑗) ∈ ℂ) ∧ (𝐹‘𝑘) ∈ ℂ) → (abs‘(𝐹‘𝑗)) ∈ ℝ) |
30 | 28, 29 | resubcld 8300 |
. . . . . . . . . . . . 13
⊢ (((𝑗 ∈ 𝑍 ∧ (𝐹‘𝑗) ∈ ℂ) ∧ (𝐹‘𝑘) ∈ ℂ) → ((abs‘(𝐹‘𝑘)) − (abs‘(𝐹‘𝑗))) ∈ ℝ) |
31 | 23, 24 | subcld 8230 |
. . . . . . . . . . . . . 14
⊢ (((𝑗 ∈ 𝑍 ∧ (𝐹‘𝑗) ∈ ℂ) ∧ (𝐹‘𝑘) ∈ ℂ) → ((𝐹‘𝑘) − (𝐹‘𝑗)) ∈ ℂ) |
32 | | abscl 11015 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑘) − (𝐹‘𝑗)) ∈ ℂ → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) ∈ ℝ) |
33 | 31, 32 | syl 14 |
. . . . . . . . . . . . 13
⊢ (((𝑗 ∈ 𝑍 ∧ (𝐹‘𝑗) ∈ ℂ) ∧ (𝐹‘𝑘) ∈ ℂ) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) ∈ ℝ) |
34 | | lelttr 8008 |
. . . . . . . . . . . . . 14
⊢
((((abs‘(𝐹‘𝑘)) − (abs‘(𝐹‘𝑗))) ∈ ℝ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) ∈ ℝ ∧ 1 ∈ ℝ)
→ ((((abs‘(𝐹‘𝑘)) − (abs‘(𝐹‘𝑗))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 1) → ((abs‘(𝐹‘𝑘)) − (abs‘(𝐹‘𝑗))) < 1)) |
35 | 20, 34 | mp3an3 1321 |
. . . . . . . . . . . . 13
⊢
((((abs‘(𝐹‘𝑘)) − (abs‘(𝐹‘𝑗))) ∈ ℝ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) ∈ ℝ) →
((((abs‘(𝐹‘𝑘)) − (abs‘(𝐹‘𝑗))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 1) → ((abs‘(𝐹‘𝑘)) − (abs‘(𝐹‘𝑗))) < 1)) |
36 | 30, 33, 35 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ (((𝑗 ∈ 𝑍 ∧ (𝐹‘𝑗) ∈ ℂ) ∧ (𝐹‘𝑘) ∈ ℂ) → ((((abs‘(𝐹‘𝑘)) − (abs‘(𝐹‘𝑗))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 1) → ((abs‘(𝐹‘𝑘)) − (abs‘(𝐹‘𝑗))) < 1)) |
37 | 26, 36 | mpand 427 |
. . . . . . . . . . 11
⊢ (((𝑗 ∈ 𝑍 ∧ (𝐹‘𝑗) ∈ ℂ) ∧ (𝐹‘𝑘) ∈ ℂ) → ((abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 1 → ((abs‘(𝐹‘𝑘)) − (abs‘(𝐹‘𝑗))) < 1)) |
38 | | ltsubadd2 8352 |
. . . . . . . . . . . . 13
⊢
(((abs‘(𝐹‘𝑘)) ∈ ℝ ∧ (abs‘(𝐹‘𝑗)) ∈ ℝ ∧ 1 ∈ ℝ)
→ (((abs‘(𝐹‘𝑘)) − (abs‘(𝐹‘𝑗))) < 1 ↔ (abs‘(𝐹‘𝑘)) < ((abs‘(𝐹‘𝑗)) + 1))) |
39 | 20, 38 | mp3an3 1321 |
. . . . . . . . . . . 12
⊢
(((abs‘(𝐹‘𝑘)) ∈ ℝ ∧ (abs‘(𝐹‘𝑗)) ∈ ℝ) → (((abs‘(𝐹‘𝑘)) − (abs‘(𝐹‘𝑗))) < 1 ↔ (abs‘(𝐹‘𝑘)) < ((abs‘(𝐹‘𝑗)) + 1))) |
40 | 28, 29, 39 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (((𝑗 ∈ 𝑍 ∧ (𝐹‘𝑗) ∈ ℂ) ∧ (𝐹‘𝑘) ∈ ℂ) → (((abs‘(𝐹‘𝑘)) − (abs‘(𝐹‘𝑗))) < 1 ↔ (abs‘(𝐹‘𝑘)) < ((abs‘(𝐹‘𝑗)) + 1))) |
41 | 37, 40 | sylibd 148 |
. . . . . . . . . 10
⊢ (((𝑗 ∈ 𝑍 ∧ (𝐹‘𝑗) ∈ ℂ) ∧ (𝐹‘𝑘) ∈ ℂ) → ((abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 1 → (abs‘(𝐹‘𝑘)) < ((abs‘(𝐹‘𝑗)) + 1))) |
42 | 41 | expimpd 361 |
. . . . . . . . 9
⊢ ((𝑗 ∈ 𝑍 ∧ (𝐹‘𝑗) ∈ ℂ) → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 1) → (abs‘(𝐹‘𝑘)) < ((abs‘(𝐹‘𝑗)) + 1))) |
43 | 42 | ralimdv 2538 |
. . . . . . . 8
⊢ ((𝑗 ∈ 𝑍 ∧ (𝐹‘𝑗) ∈ ℂ) → (∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 1) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < ((abs‘(𝐹‘𝑗)) + 1))) |
44 | 43 | impancom 258 |
. . . . . . 7
⊢ ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 1)) → ((𝐹‘𝑗) ∈ ℂ → ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < ((abs‘(𝐹‘𝑗)) + 1))) |
45 | 17, 44 | mpd 13 |
. . . . . 6
⊢ ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 1)) → ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < ((abs‘(𝐹‘𝑗)) + 1)) |
46 | | breq2 3993 |
. . . . . . . 8
⊢ (𝑦 = ((abs‘(𝐹‘𝑗)) + 1) → ((abs‘(𝐹‘𝑘)) < 𝑦 ↔ (abs‘(𝐹‘𝑘)) < ((abs‘(𝐹‘𝑗)) + 1))) |
47 | 46 | ralbidv 2470 |
. . . . . . 7
⊢ (𝑦 = ((abs‘(𝐹‘𝑗)) + 1) → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑦 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < ((abs‘(𝐹‘𝑗)) + 1))) |
48 | 47 | rspcev 2834 |
. . . . . 6
⊢
((((abs‘(𝐹‘𝑗)) + 1) ∈ ℝ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < ((abs‘(𝐹‘𝑗)) + 1)) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑦) |
49 | 22, 45, 48 | syl2anc 409 |
. . . . 5
⊢ ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 1)) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑦) |
50 | 49 | ex 114 |
. . . 4
⊢ (𝑗 ∈ 𝑍 → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 1) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑦)) |
51 | 50 | reximia 2565 |
. . 3
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 1) → ∃𝑗 ∈ 𝑍 ∃𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑦) |
52 | | rexcom 2634 |
. . 3
⊢
(∃𝑗 ∈
𝑍 ∃𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑦 ↔ ∃𝑦 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑦) |
53 | 51, 52 | sylib 121 |
. 2
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 1) → ∃𝑦 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑦) |
54 | 6, 53 | syl 14 |
1
⊢
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑦) |