ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caubnd2 GIF version

Theorem caubnd2 11347
Description: A Cauchy sequence of complex numbers is eventually bounded. (Contributed by Mario Carneiro, 14-Feb-2014.)
Hypothesis
Ref Expression
cau3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
caubnd2 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
Distinct variable groups:   𝑗,𝑘,𝑥,𝑦,𝐹   𝑗,𝑀,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥,𝑦
Allowed substitution hint:   𝑀(𝑦)

Proof of Theorem caubnd2
StepHypRef Expression
1 1rp 9761 . . 3 1 ∈ ℝ+
2 breq2 4047 . . . . . 6 (𝑥 = 1 → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1))
32anbi2d 464 . . . . 5 (𝑥 = 1 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)))
43rexralbidv 2531 . . . 4 (𝑥 = 1 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)))
54rspcv 2872 . . 3 (1 ∈ ℝ+ → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)))
61, 5ax-mp 5 . 2 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1))
7 eluzelz 9639 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
8 cau3.1 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
97, 8eleq2s 2299 . . . . . . . . . 10 (𝑗𝑍𝑗 ∈ ℤ)
10 uzid 9644 . . . . . . . . . 10 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
119, 10syl 14 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
12 simpl 109 . . . . . . . . . 10 (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → (𝐹𝑘) ∈ ℂ)
1312ralimi 2568 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
14 fveq2 5570 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1514eleq1d 2273 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
1615rspcva 2874 . . . . . . . . 9 ((𝑗 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ) → (𝐹𝑗) ∈ ℂ)
1711, 13, 16syl2an 289 . . . . . . . 8 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → (𝐹𝑗) ∈ ℂ)
18 abscl 11281 . . . . . . . 8 ((𝐹𝑗) ∈ ℂ → (abs‘(𝐹𝑗)) ∈ ℝ)
1917, 18syl 14 . . . . . . 7 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → (abs‘(𝐹𝑗)) ∈ ℝ)
20 1re 8053 . . . . . . 7 1 ∈ ℝ
21 readdcl 8033 . . . . . . 7 (((abs‘(𝐹𝑗)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(𝐹𝑗)) + 1) ∈ ℝ)
2219, 20, 21sylancl 413 . . . . . 6 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → ((abs‘(𝐹𝑗)) + 1) ∈ ℝ)
23 simpr 110 . . . . . . . . . . . . 13 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (𝐹𝑘) ∈ ℂ)
24 simplr 528 . . . . . . . . . . . . 13 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (𝐹𝑗) ∈ ℂ)
25 abs2dif 11336 . . . . . . . . . . . . 13 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
2623, 24, 25syl2anc 411 . . . . . . . . . . . 12 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
27 abscl 11281 . . . . . . . . . . . . . . 15 ((𝐹𝑘) ∈ ℂ → (abs‘(𝐹𝑘)) ∈ ℝ)
2823, 27syl 14 . . . . . . . . . . . . . 14 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘(𝐹𝑘)) ∈ ℝ)
2924, 18syl 14 . . . . . . . . . . . . . 14 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘(𝐹𝑗)) ∈ ℝ)
3028, 29resubcld 8435 . . . . . . . . . . . . 13 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ∈ ℝ)
3123, 24subcld 8365 . . . . . . . . . . . . . 14 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ)
32 abscl 11281 . . . . . . . . . . . . . 14 (((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ → (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ)
3331, 32syl 14 . . . . . . . . . . . . 13 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ)
34 lelttr 8143 . . . . . . . . . . . . . 14 ((((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ ∧ 1 ∈ ℝ) → ((((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1))
3520, 34mp3an3 1338 . . . . . . . . . . . . 13 ((((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ) → ((((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1))
3630, 33, 35syl2anc 411 . . . . . . . . . . . 12 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1))
3726, 36mpand 429 . . . . . . . . . . 11 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 1 → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1))
38 ltsubadd2 8488 . . . . . . . . . . . . 13 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ (abs‘(𝐹𝑗)) ∈ ℝ ∧ 1 ∈ ℝ) → (((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1 ↔ (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
3920, 38mp3an3 1338 . . . . . . . . . . . 12 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ (abs‘(𝐹𝑗)) ∈ ℝ) → (((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1 ↔ (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4028, 29, 39syl2anc 411 . . . . . . . . . . 11 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1 ↔ (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4137, 40sylibd 149 . . . . . . . . . 10 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 1 → (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4241expimpd 363 . . . . . . . . 9 ((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4342ralimdv 2573 . . . . . . . 8 ((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4443impancom 260 . . . . . . 7 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → ((𝐹𝑗) ∈ ℂ → ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4517, 44mpd 13 . . . . . 6 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1))
46 breq2 4047 . . . . . . . 8 (𝑦 = ((abs‘(𝐹𝑗)) + 1) → ((abs‘(𝐹𝑘)) < 𝑦 ↔ (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4746ralbidv 2505 . . . . . . 7 (𝑦 = ((abs‘(𝐹𝑗)) + 1) → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4847rspcev 2876 . . . . . 6 ((((abs‘(𝐹𝑗)) + 1) ∈ ℝ ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
4922, 45, 48syl2anc 411 . . . . 5 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
5049ex 115 . . . 4 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦))
5150reximia 2600 . . 3 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ∃𝑗𝑍𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
52 rexcom 2669 . . 3 (∃𝑗𝑍𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦 ↔ ∃𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
5351, 52sylib 122 . 2 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ∃𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
546, 53syl 14 1 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  wral 2483  wrex 2484   class class class wbr 4043  cfv 5268  (class class class)co 5934  cc 7905  cr 7906  1c1 7908   + caddc 7910   < clt 8089  cle 8090  cmin 8225  cz 9354  cuz 9630  +crp 9757  abscabs 11227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026  ax-caucvg 8027
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-n0 9278  df-z 9355  df-uz 9631  df-rp 9758  df-seqfrec 10574  df-exp 10665  df-cj 11072  df-re 11073  df-im 11074  df-rsqrt 11228  df-abs 11229
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator