ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caubnd2 GIF version

Theorem caubnd2 11299
Description: A Cauchy sequence of complex numbers is eventually bounded. (Contributed by Mario Carneiro, 14-Feb-2014.)
Hypothesis
Ref Expression
cau3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
caubnd2 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
Distinct variable groups:   𝑗,𝑘,𝑥,𝑦,𝐹   𝑗,𝑀,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥,𝑦
Allowed substitution hint:   𝑀(𝑦)

Proof of Theorem caubnd2
StepHypRef Expression
1 1rp 9749 . . 3 1 ∈ ℝ+
2 breq2 4038 . . . . . 6 (𝑥 = 1 → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1))
32anbi2d 464 . . . . 5 (𝑥 = 1 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)))
43rexralbidv 2523 . . . 4 (𝑥 = 1 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)))
54rspcv 2864 . . 3 (1 ∈ ℝ+ → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)))
61, 5ax-mp 5 . 2 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1))
7 eluzelz 9627 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
8 cau3.1 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
97, 8eleq2s 2291 . . . . . . . . . 10 (𝑗𝑍𝑗 ∈ ℤ)
10 uzid 9632 . . . . . . . . . 10 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
119, 10syl 14 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
12 simpl 109 . . . . . . . . . 10 (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → (𝐹𝑘) ∈ ℂ)
1312ralimi 2560 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
14 fveq2 5561 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1514eleq1d 2265 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
1615rspcva 2866 . . . . . . . . 9 ((𝑗 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ) → (𝐹𝑗) ∈ ℂ)
1711, 13, 16syl2an 289 . . . . . . . 8 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → (𝐹𝑗) ∈ ℂ)
18 abscl 11233 . . . . . . . 8 ((𝐹𝑗) ∈ ℂ → (abs‘(𝐹𝑗)) ∈ ℝ)
1917, 18syl 14 . . . . . . 7 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → (abs‘(𝐹𝑗)) ∈ ℝ)
20 1re 8042 . . . . . . 7 1 ∈ ℝ
21 readdcl 8022 . . . . . . 7 (((abs‘(𝐹𝑗)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(𝐹𝑗)) + 1) ∈ ℝ)
2219, 20, 21sylancl 413 . . . . . 6 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → ((abs‘(𝐹𝑗)) + 1) ∈ ℝ)
23 simpr 110 . . . . . . . . . . . . 13 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (𝐹𝑘) ∈ ℂ)
24 simplr 528 . . . . . . . . . . . . 13 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (𝐹𝑗) ∈ ℂ)
25 abs2dif 11288 . . . . . . . . . . . . 13 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
2623, 24, 25syl2anc 411 . . . . . . . . . . . 12 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
27 abscl 11233 . . . . . . . . . . . . . . 15 ((𝐹𝑘) ∈ ℂ → (abs‘(𝐹𝑘)) ∈ ℝ)
2823, 27syl 14 . . . . . . . . . . . . . 14 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘(𝐹𝑘)) ∈ ℝ)
2924, 18syl 14 . . . . . . . . . . . . . 14 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘(𝐹𝑗)) ∈ ℝ)
3028, 29resubcld 8424 . . . . . . . . . . . . 13 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ∈ ℝ)
3123, 24subcld 8354 . . . . . . . . . . . . . 14 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ)
32 abscl 11233 . . . . . . . . . . . . . 14 (((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ → (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ)
3331, 32syl 14 . . . . . . . . . . . . 13 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ)
34 lelttr 8132 . . . . . . . . . . . . . 14 ((((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ ∧ 1 ∈ ℝ) → ((((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1))
3520, 34mp3an3 1337 . . . . . . . . . . . . 13 ((((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ) → ((((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1))
3630, 33, 35syl2anc 411 . . . . . . . . . . . 12 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1))
3726, 36mpand 429 . . . . . . . . . . 11 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 1 → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1))
38 ltsubadd2 8477 . . . . . . . . . . . . 13 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ (abs‘(𝐹𝑗)) ∈ ℝ ∧ 1 ∈ ℝ) → (((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1 ↔ (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
3920, 38mp3an3 1337 . . . . . . . . . . . 12 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ (abs‘(𝐹𝑗)) ∈ ℝ) → (((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1 ↔ (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4028, 29, 39syl2anc 411 . . . . . . . . . . 11 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1 ↔ (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4137, 40sylibd 149 . . . . . . . . . 10 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 1 → (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4241expimpd 363 . . . . . . . . 9 ((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4342ralimdv 2565 . . . . . . . 8 ((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4443impancom 260 . . . . . . 7 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → ((𝐹𝑗) ∈ ℂ → ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4517, 44mpd 13 . . . . . 6 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1))
46 breq2 4038 . . . . . . . 8 (𝑦 = ((abs‘(𝐹𝑗)) + 1) → ((abs‘(𝐹𝑘)) < 𝑦 ↔ (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4746ralbidv 2497 . . . . . . 7 (𝑦 = ((abs‘(𝐹𝑗)) + 1) → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4847rspcev 2868 . . . . . 6 ((((abs‘(𝐹𝑗)) + 1) ∈ ℝ ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
4922, 45, 48syl2anc 411 . . . . 5 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
5049ex 115 . . . 4 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦))
5150reximia 2592 . . 3 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ∃𝑗𝑍𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
52 rexcom 2661 . . 3 (∃𝑗𝑍𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦 ↔ ∃𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
5351, 52sylib 122 . 2 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ∃𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
546, 53syl 14 1 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  wrex 2476   class class class wbr 4034  cfv 5259  (class class class)co 5925  cc 7894  cr 7895  1c1 7897   + caddc 7899   < clt 8078  cle 8079  cmin 8214  cz 9343  cuz 9618  +crp 9745  abscabs 11179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-rp 9746  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator