ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caubnd2 GIF version

Theorem caubnd2 10889
Description: A Cauchy sequence of complex numbers is eventually bounded. (Contributed by Mario Carneiro, 14-Feb-2014.)
Hypothesis
Ref Expression
cau3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
caubnd2 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
Distinct variable groups:   𝑗,𝑘,𝑥,𝑦,𝐹   𝑗,𝑀,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥,𝑦
Allowed substitution hint:   𝑀(𝑦)

Proof of Theorem caubnd2
StepHypRef Expression
1 1rp 9445 . . 3 1 ∈ ℝ+
2 breq2 3933 . . . . . 6 (𝑥 = 1 → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1))
32anbi2d 459 . . . . 5 (𝑥 = 1 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)))
43rexralbidv 2461 . . . 4 (𝑥 = 1 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)))
54rspcv 2785 . . 3 (1 ∈ ℝ+ → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)))
61, 5ax-mp 5 . 2 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1))
7 eluzelz 9335 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
8 cau3.1 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
97, 8eleq2s 2234 . . . . . . . . . 10 (𝑗𝑍𝑗 ∈ ℤ)
10 uzid 9340 . . . . . . . . . 10 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
119, 10syl 14 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
12 simpl 108 . . . . . . . . . 10 (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → (𝐹𝑘) ∈ ℂ)
1312ralimi 2495 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
14 fveq2 5421 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1514eleq1d 2208 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
1615rspcva 2787 . . . . . . . . 9 ((𝑗 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ) → (𝐹𝑗) ∈ ℂ)
1711, 13, 16syl2an 287 . . . . . . . 8 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → (𝐹𝑗) ∈ ℂ)
18 abscl 10823 . . . . . . . 8 ((𝐹𝑗) ∈ ℂ → (abs‘(𝐹𝑗)) ∈ ℝ)
1917, 18syl 14 . . . . . . 7 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → (abs‘(𝐹𝑗)) ∈ ℝ)
20 1re 7765 . . . . . . 7 1 ∈ ℝ
21 readdcl 7746 . . . . . . 7 (((abs‘(𝐹𝑗)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(𝐹𝑗)) + 1) ∈ ℝ)
2219, 20, 21sylancl 409 . . . . . 6 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → ((abs‘(𝐹𝑗)) + 1) ∈ ℝ)
23 simpr 109 . . . . . . . . . . . . 13 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (𝐹𝑘) ∈ ℂ)
24 simplr 519 . . . . . . . . . . . . 13 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (𝐹𝑗) ∈ ℂ)
25 abs2dif 10878 . . . . . . . . . . . . 13 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
2623, 24, 25syl2anc 408 . . . . . . . . . . . 12 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
27 abscl 10823 . . . . . . . . . . . . . . 15 ((𝐹𝑘) ∈ ℂ → (abs‘(𝐹𝑘)) ∈ ℝ)
2823, 27syl 14 . . . . . . . . . . . . . 14 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘(𝐹𝑘)) ∈ ℝ)
2924, 18syl 14 . . . . . . . . . . . . . 14 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘(𝐹𝑗)) ∈ ℝ)
3028, 29resubcld 8143 . . . . . . . . . . . . 13 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ∈ ℝ)
3123, 24subcld 8073 . . . . . . . . . . . . . 14 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ)
32 abscl 10823 . . . . . . . . . . . . . 14 (((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ → (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ)
3331, 32syl 14 . . . . . . . . . . . . 13 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ)
34 lelttr 7852 . . . . . . . . . . . . . 14 ((((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ ∧ 1 ∈ ℝ) → ((((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1))
3520, 34mp3an3 1304 . . . . . . . . . . . . 13 ((((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ) → ((((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1))
3630, 33, 35syl2anc 408 . . . . . . . . . . . 12 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1))
3726, 36mpand 425 . . . . . . . . . . 11 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 1 → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1))
38 ltsubadd2 8195 . . . . . . . . . . . . 13 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ (abs‘(𝐹𝑗)) ∈ ℝ ∧ 1 ∈ ℝ) → (((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1 ↔ (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
3920, 38mp3an3 1304 . . . . . . . . . . . 12 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ (abs‘(𝐹𝑗)) ∈ ℝ) → (((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1 ↔ (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4028, 29, 39syl2anc 408 . . . . . . . . . . 11 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1 ↔ (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4137, 40sylibd 148 . . . . . . . . . 10 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 1 → (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4241expimpd 360 . . . . . . . . 9 ((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4342ralimdv 2500 . . . . . . . 8 ((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4443impancom 258 . . . . . . 7 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → ((𝐹𝑗) ∈ ℂ → ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4517, 44mpd 13 . . . . . 6 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1))
46 breq2 3933 . . . . . . . 8 (𝑦 = ((abs‘(𝐹𝑗)) + 1) → ((abs‘(𝐹𝑘)) < 𝑦 ↔ (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4746ralbidv 2437 . . . . . . 7 (𝑦 = ((abs‘(𝐹𝑗)) + 1) → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4847rspcev 2789 . . . . . 6 ((((abs‘(𝐹𝑗)) + 1) ∈ ℝ ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
4922, 45, 48syl2anc 408 . . . . 5 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
5049ex 114 . . . 4 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦))
5150reximia 2527 . . 3 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ∃𝑗𝑍𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
52 rexcom 2595 . . 3 (∃𝑗𝑍𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦 ↔ ∃𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
5351, 52sylib 121 . 2 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ∃𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
546, 53syl 14 1 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wral 2416  wrex 2417   class class class wbr 3929  cfv 5123  (class class class)co 5774  cc 7618  cr 7619  1c1 7621   + caddc 7623   < clt 7800  cle 7801  cmin 7933  cz 9054  cuz 9326  +crp 9441  abscabs 10769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator