ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.23v GIF version

Theorem r19.23v 2586
Description: Theorem 19.23 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 31-Aug-1999.)
Assertion
Ref Expression
r19.23v (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem r19.23v
StepHypRef Expression
1 nfv 1528 . 2 𝑥𝜓
21r19.23 2585 1 (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wral 2455  wrex 2456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-ral 2460  df-rex 2461
This theorem is referenced by:  uniiunlem  3246  dfiin2g  3921  iunss  3929  ralxfr2d  4466  rexxfr2d  4467  ssrel2  4718  reliun  4749  funimaexglem  5301  funimass4  5568  ralrnmpo  5991
  Copyright terms: Public domain W3C validator