ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.23v GIF version

Theorem r19.23v 2616
Description: Theorem 19.23 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 31-Aug-1999.)
Assertion
Ref Expression
r19.23v (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem r19.23v
StepHypRef Expression
1 nfv 1552 . 2 𝑥𝜓
21r19.23 2615 1 (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wral 2485  wrex 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-ral 2490  df-rex 2491
This theorem is referenced by:  uniiunlem  3286  dfiin2g  3966  iunss  3974  ralxfr2d  4519  rexxfr2d  4520  ssrel2  4773  reliun  4804  funimaexglem  5366  funimass4  5642  ralrnmpo  6073
  Copyright terms: Public domain W3C validator