Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > r19.23v | GIF version |
Description: Theorem 19.23 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 31-Aug-1999.) |
Ref | Expression |
---|---|
r19.23v | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | r19.23 2574 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wral 2444 ∃wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-ral 2449 df-rex 2450 |
This theorem is referenced by: uniiunlem 3231 dfiin2g 3899 iunss 3907 ralxfr2d 4442 rexxfr2d 4443 ssrel2 4694 reliun 4725 funimaexglem 5271 funimass4 5537 ralrnmpo 5956 |
Copyright terms: Public domain | W3C validator |