| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onintrab2im | GIF version | ||
| Description: An existence condition which implies an intersection is an ordinal number. (Contributed by Jim Kingdon, 30-Aug-2021.) |
| Ref | Expression |
|---|---|
| onintrab2im | ⊢ (∃𝑥 ∈ On 𝜑 → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3289 | . 2 ⊢ {𝑥 ∈ On ∣ 𝜑} ⊆ On | |
| 2 | nfrab1 2691 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ On ∣ 𝜑} | |
| 3 | 2 | nfcri 2346 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} |
| 4 | 3 | nfex 1663 | . . 3 ⊢ Ⅎ𝑥∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} |
| 5 | rabid 2687 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (𝑥 ∈ On ∧ 𝜑)) | |
| 6 | elex2 2796 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∈ On ∣ 𝜑} → ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑}) | |
| 7 | 5, 6 | sylbir 135 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝜑) → ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑}) |
| 8 | 7 | ex 115 | . . 3 ⊢ (𝑥 ∈ On → (𝜑 → ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑})) |
| 9 | 4, 8 | rexlimi 2621 | . 2 ⊢ (∃𝑥 ∈ On 𝜑 → ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑}) |
| 10 | onintonm 4586 | . 2 ⊢ (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑}) → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) | |
| 11 | 1, 9, 10 | sylancr 414 | 1 ⊢ (∃𝑥 ∈ On 𝜑 → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1518 ∈ wcel 2180 ∃wrex 2489 {crab 2492 ⊆ wss 3177 ∩ cint 3902 Oncon0 4431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-uni 3868 df-int 3903 df-tr 4162 df-iord 4434 df-on 4436 df-suc 4439 |
| This theorem is referenced by: cardcl 7321 |
| Copyright terms: Public domain | W3C validator |