ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onintrab2im GIF version

Theorem onintrab2im 4555
Description: An existence condition which implies an intersection is an ordinal number. (Contributed by Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
onintrab2im (∃𝑥 ∈ On 𝜑 {𝑥 ∈ On ∣ 𝜑} ∈ On)

Proof of Theorem onintrab2im
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3269 . 2 {𝑥 ∈ On ∣ 𝜑} ⊆ On
2 nfrab1 2677 . . . . 5 𝑥{𝑥 ∈ On ∣ 𝜑}
32nfcri 2333 . . . 4 𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑}
43nfex 1651 . . 3 𝑥𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑}
5 rabid 2673 . . . . 5 (𝑥 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (𝑥 ∈ On ∧ 𝜑))
6 elex2 2779 . . . . 5 (𝑥 ∈ {𝑥 ∈ On ∣ 𝜑} → ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑})
75, 6sylbir 135 . . . 4 ((𝑥 ∈ On ∧ 𝜑) → ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑})
87ex 115 . . 3 (𝑥 ∈ On → (𝜑 → ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑}))
94, 8rexlimi 2607 . 2 (∃𝑥 ∈ On 𝜑 → ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑})
10 onintonm 4554 . 2 (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑}) → {𝑥 ∈ On ∣ 𝜑} ∈ On)
111, 9, 10sylancr 414 1 (∃𝑥 ∈ On 𝜑 {𝑥 ∈ On ∣ 𝜑} ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1506  wcel 2167  wrex 2476  {crab 2479  wss 3157   cint 3875  Oncon0 4399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-uni 3841  df-int 3876  df-tr 4133  df-iord 4402  df-on 4404  df-suc 4407
This theorem is referenced by:  cardcl  7259
  Copyright terms: Public domain W3C validator