Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onintrab2im | GIF version |
Description: An existence condition which implies an intersection is an ordinal number. (Contributed by Jim Kingdon, 30-Aug-2021.) |
Ref | Expression |
---|---|
onintrab2im | ⊢ (∃𝑥 ∈ On 𝜑 → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3227 | . 2 ⊢ {𝑥 ∈ On ∣ 𝜑} ⊆ On | |
2 | nfrab1 2645 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ On ∣ 𝜑} | |
3 | 2 | nfcri 2302 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} |
4 | 3 | nfex 1625 | . . 3 ⊢ Ⅎ𝑥∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} |
5 | rabid 2641 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (𝑥 ∈ On ∧ 𝜑)) | |
6 | elex2 2742 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∈ On ∣ 𝜑} → ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑}) | |
7 | 5, 6 | sylbir 134 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝜑) → ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑}) |
8 | 7 | ex 114 | . . 3 ⊢ (𝑥 ∈ On → (𝜑 → ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑})) |
9 | 4, 8 | rexlimi 2576 | . 2 ⊢ (∃𝑥 ∈ On 𝜑 → ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑}) |
10 | onintonm 4494 | . 2 ⊢ (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑}) → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) | |
11 | 1, 9, 10 | sylancr 411 | 1 ⊢ (∃𝑥 ∈ On 𝜑 → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃wex 1480 ∈ wcel 2136 ∃wrex 2445 {crab 2448 ⊆ wss 3116 ∩ cint 3824 Oncon0 4341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 |
This theorem is referenced by: cardcl 7137 |
Copyright terms: Public domain | W3C validator |