![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > onintrab2im | GIF version |
Description: An existence condition which implies an intersection is an ordinal number. (Contributed by Jim Kingdon, 30-Aug-2021.) |
Ref | Expression |
---|---|
onintrab2im | ⊢ (∃𝑥 ∈ On 𝜑 → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3264 | . 2 ⊢ {𝑥 ∈ On ∣ 𝜑} ⊆ On | |
2 | nfrab1 2674 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ On ∣ 𝜑} | |
3 | 2 | nfcri 2330 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} |
4 | 3 | nfex 1648 | . . 3 ⊢ Ⅎ𝑥∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} |
5 | rabid 2670 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (𝑥 ∈ On ∧ 𝜑)) | |
6 | elex2 2776 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∈ On ∣ 𝜑} → ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑}) | |
7 | 5, 6 | sylbir 135 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝜑) → ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑}) |
8 | 7 | ex 115 | . . 3 ⊢ (𝑥 ∈ On → (𝜑 → ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑})) |
9 | 4, 8 | rexlimi 2604 | . 2 ⊢ (∃𝑥 ∈ On 𝜑 → ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑}) |
10 | onintonm 4549 | . 2 ⊢ (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑}) → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) | |
11 | 1, 9, 10 | sylancr 414 | 1 ⊢ (∃𝑥 ∈ On 𝜑 → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∃wex 1503 ∈ wcel 2164 ∃wrex 2473 {crab 2476 ⊆ wss 3153 ∩ cint 3870 Oncon0 4394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-int 3871 df-tr 4128 df-iord 4397 df-on 4399 df-suc 4402 |
This theorem is referenced by: cardcl 7241 |
Copyright terms: Public domain | W3C validator |