ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onintrab2im GIF version

Theorem onintrab2im 4392
Description: An existence condition which implies an intersection is an ordinal number. (Contributed by Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
onintrab2im (∃𝑥 ∈ On 𝜑 {𝑥 ∈ On ∣ 𝜑} ∈ On)

Proof of Theorem onintrab2im
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3146 . 2 {𝑥 ∈ On ∣ 𝜑} ⊆ On
2 nfrab1 2582 . . . . 5 𝑥{𝑥 ∈ On ∣ 𝜑}
32nfcri 2247 . . . 4 𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑}
43nfex 1597 . . 3 𝑥𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑}
5 rabid 2578 . . . . 5 (𝑥 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (𝑥 ∈ On ∧ 𝜑))
6 elex2 2671 . . . . 5 (𝑥 ∈ {𝑥 ∈ On ∣ 𝜑} → ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑})
75, 6sylbir 134 . . . 4 ((𝑥 ∈ On ∧ 𝜑) → ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑})
87ex 114 . . 3 (𝑥 ∈ On → (𝜑 → ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑}))
94, 8rexlimi 2514 . 2 (∃𝑥 ∈ On 𝜑 → ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑})
10 onintonm 4391 . 2 (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑}) → {𝑥 ∈ On ∣ 𝜑} ∈ On)
111, 9, 10sylancr 408 1 (∃𝑥 ∈ On 𝜑 {𝑥 ∈ On ∣ 𝜑} ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wex 1449  wcel 1461  wrex 2389  {crab 2392  wss 3035   cint 3735  Oncon0 4243
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-rab 2397  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-uni 3701  df-int 3736  df-tr 3985  df-iord 4246  df-on 4248  df-suc 4251
This theorem is referenced by:  cardcl  6984
  Copyright terms: Public domain W3C validator