ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onintrab2im GIF version

Theorem onintrab2im 4298
Description: An existence condition which implies an intersection is an ordinal number. (Contributed by Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
onintrab2im (∃𝑥 ∈ On 𝜑 {𝑥 ∈ On ∣ 𝜑} ∈ On)

Proof of Theorem onintrab2im
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3090 . 2 {𝑥 ∈ On ∣ 𝜑} ⊆ On
2 nfrab1 2539 . . . . 5 𝑥{𝑥 ∈ On ∣ 𝜑}
32nfcri 2217 . . . 4 𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑}
43nfex 1569 . . 3 𝑥𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑}
5 rabid 2535 . . . . 5 (𝑥 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (𝑥 ∈ On ∧ 𝜑))
6 elex2 2626 . . . . 5 (𝑥 ∈ {𝑥 ∈ On ∣ 𝜑} → ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑})
75, 6sylbir 133 . . . 4 ((𝑥 ∈ On ∧ 𝜑) → ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑})
87ex 113 . . 3 (𝑥 ∈ On → (𝜑 → ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑}))
94, 8rexlimi 2476 . 2 (∃𝑥 ∈ On 𝜑 → ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑})
10 onintonm 4297 . 2 (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ ∃𝑦 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑}) → {𝑥 ∈ On ∣ 𝜑} ∈ On)
111, 9, 10sylancr 405 1 (∃𝑥 ∈ On 𝜑 {𝑥 ∈ On ∣ 𝜑} ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wex 1422  wcel 1434  wrex 2354  {crab 2357  wss 2984   cint 3662  Oncon0 4154
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000  ax-un 4224
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2614  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-uni 3628  df-int 3663  df-tr 3902  df-iord 4157  df-on 4159  df-suc 4162
This theorem is referenced by:  cardcl  6712
  Copyright terms: Public domain W3C validator