ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  triun GIF version

Theorem triun 4144
Description: The indexed union of a class of transitive sets is transitive. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
triun (∀𝑥𝐴 Tr 𝐵 → Tr 𝑥𝐴 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem triun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eliun 3920 . . . 4 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
2 r19.29 2634 . . . . 5 ((∀𝑥𝐴 Tr 𝐵 ∧ ∃𝑥𝐴 𝑦𝐵) → ∃𝑥𝐴 (Tr 𝐵𝑦𝐵))
3 nfcv 2339 . . . . . . 7 𝑥𝑦
4 nfiu1 3946 . . . . . . 7 𝑥 𝑥𝐴 𝐵
53, 4nfss 3176 . . . . . 6 𝑥 𝑦 𝑥𝐴 𝐵
6 trss 4140 . . . . . . . 8 (Tr 𝐵 → (𝑦𝐵𝑦𝐵))
76imp 124 . . . . . . 7 ((Tr 𝐵𝑦𝐵) → 𝑦𝐵)
8 ssiun2 3959 . . . . . . . 8 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
9 sstr2 3190 . . . . . . . 8 (𝑦𝐵 → (𝐵 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐵))
108, 9syl5com 29 . . . . . . 7 (𝑥𝐴 → (𝑦𝐵𝑦 𝑥𝐴 𝐵))
117, 10syl5 32 . . . . . 6 (𝑥𝐴 → ((Tr 𝐵𝑦𝐵) → 𝑦 𝑥𝐴 𝐵))
125, 11rexlimi 2607 . . . . 5 (∃𝑥𝐴 (Tr 𝐵𝑦𝐵) → 𝑦 𝑥𝐴 𝐵)
132, 12syl 14 . . . 4 ((∀𝑥𝐴 Tr 𝐵 ∧ ∃𝑥𝐴 𝑦𝐵) → 𝑦 𝑥𝐴 𝐵)
141, 13sylan2b 287 . . 3 ((∀𝑥𝐴 Tr 𝐵𝑦 𝑥𝐴 𝐵) → 𝑦 𝑥𝐴 𝐵)
1514ralrimiva 2570 . 2 (∀𝑥𝐴 Tr 𝐵 → ∀𝑦 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐵)
16 dftr3 4135 . 2 (Tr 𝑥𝐴 𝐵 ↔ ∀𝑦 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐵)
1715, 16sylibr 134 1 (∀𝑥𝐴 Tr 𝐵 → Tr 𝑥𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167  wral 2475  wrex 2476  wss 3157   ciun 3916  Tr wtr 4131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-in 3163  df-ss 3170  df-uni 3840  df-iun 3918  df-tr 4132
This theorem is referenced by:  truni  4145
  Copyright terms: Public domain W3C validator