| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > triun | GIF version | ||
| Description: The indexed union of a class of transitive sets is transitive. (Contributed by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| triun | ⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∪ 𝑥 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliun 3920 | . . . 4 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 2 | r19.29 2634 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝐴 Tr 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 (Tr 𝐵 ∧ 𝑦 ∈ 𝐵)) | |
| 3 | nfcv 2339 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
| 4 | nfiu1 3946 | . . . . . . 7 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 | |
| 5 | 3, 4 | nfss 3176 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 |
| 6 | trss 4140 | . . . . . . . 8 ⊢ (Tr 𝐵 → (𝑦 ∈ 𝐵 → 𝑦 ⊆ 𝐵)) | |
| 7 | 6 | imp 124 | . . . . . . 7 ⊢ ((Tr 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ⊆ 𝐵) |
| 8 | ssiun2 3959 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
| 9 | sstr2 3190 | . . . . . . . 8 ⊢ (𝑦 ⊆ 𝐵 → (𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵)) | |
| 10 | 8, 9 | syl5com 29 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ⊆ 𝐵 → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵)) |
| 11 | 7, 10 | syl5 32 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ((Tr 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵)) |
| 12 | 5, 11 | rexlimi 2607 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 (Tr 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| 13 | 2, 12 | syl 14 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 Tr 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| 14 | 1, 13 | sylan2b 287 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 Tr 𝐵 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| 15 | 14 | ralrimiva 2570 | . 2 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → ∀𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| 16 | dftr3 4135 | . 2 ⊢ (Tr ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
| 17 | 15, 16 | sylibr 134 | 1 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∪ 𝑥 ∈ 𝐴 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 ⊆ wss 3157 ∪ ciun 3916 Tr wtr 4131 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-uni 3840 df-iun 3918 df-tr 4132 |
| This theorem is referenced by: truni 4145 |
| Copyright terms: Public domain | W3C validator |