![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexm | GIF version |
Description: Restricted existential quantification implies its restriction is inhabited. (Contributed by Jim Kingdon, 16-Oct-2018.) |
Ref | Expression |
---|---|
rexm | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2474 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | simpl 109 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 ∈ 𝐴) | |
3 | 2 | eximi 1611 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 𝑥 ∈ 𝐴) |
4 | 1, 3 | sylbi 121 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∃wex 1503 ∈ wcel 2160 ∃wrex 2469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-rex 2474 |
This theorem is referenced by: elrelimasn 5012 eusvobj2 5883 exmidomni 7171 fodjum 7175 ismgmid 12856 ismnd 12895 dfgrp2e 12987 |
Copyright terms: Public domain | W3C validator |