Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexm | GIF version |
Description: Restricted existential quantification implies its restriction is inhabited. (Contributed by Jim Kingdon, 16-Oct-2018.) |
Ref | Expression |
---|---|
rexm | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2459 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | simpl 109 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 ∈ 𝐴) | |
3 | 2 | eximi 1598 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 𝑥 ∈ 𝐴) |
4 | 1, 3 | sylbi 121 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∃wex 1490 ∈ wcel 2146 ∃wrex 2454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-ial 1532 |
This theorem depends on definitions: df-bi 117 df-rex 2459 |
This theorem is referenced by: eusvobj2 5851 exmidomni 7130 fodjum 7134 ismgmid 12660 ismnd 12684 dfgrp2e 12763 |
Copyright terms: Public domain | W3C validator |