ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexm GIF version

Theorem rexm 3559
Description: Restricted existential quantification implies its restriction is inhabited. (Contributed by Jim Kingdon, 16-Oct-2018.)
Assertion
Ref Expression
rexm (∃𝑥𝐴 𝜑 → ∃𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexm
StepHypRef Expression
1 df-rex 2489 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 simpl 109 . . 3 ((𝑥𝐴𝜑) → 𝑥𝐴)
32eximi 1622 . 2 (∃𝑥(𝑥𝐴𝜑) → ∃𝑥 𝑥𝐴)
41, 3sylbi 121 1 (∃𝑥𝐴 𝜑 → ∃𝑥 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1514  wcel 2175  wrex 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-ial 1556
This theorem depends on definitions:  df-bi 117  df-rex 2489
This theorem is referenced by:  elrelimasn  5045  eusvobj2  5920  exmidomni  7226  fodjum  7230  ismgmid  13127  ismnd  13169  dfgrp2e  13278  zrhval  14297
  Copyright terms: Public domain W3C validator