ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexm Unicode version

Theorem rexm 3522
Description: Restricted existential quantification implies its restriction is inhabited. (Contributed by Jim Kingdon, 16-Oct-2018.)
Assertion
Ref Expression
rexm  |-  ( E. x  e.  A  ph  ->  E. x  x  e.  A )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem rexm
StepHypRef Expression
1 df-rex 2461 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
2 simpl 109 . . 3  |-  ( ( x  e.  A  /\  ph )  ->  x  e.  A )
32eximi 1600 . 2  |-  ( E. x ( x  e.  A  /\  ph )  ->  E. x  x  e.  A )
41, 3sylbi 121 1  |-  ( E. x  e.  A  ph  ->  E. x  x  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1492    e. wcel 2148   E.wrex 2456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-rex 2461
This theorem is referenced by:  elrelimasn  4994  eusvobj2  5860  exmidomni  7139  fodjum  7143  ismgmid  12790  ismnd  12814  dfgrp2e  12897
  Copyright terms: Public domain W3C validator