ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusvobj2 GIF version

Theorem eusvobj2 5911
Description: Specify the same property in two ways when class 𝐵(𝑦) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
eusvobj1.1 𝐵 ∈ V
Assertion
Ref Expression
eusvobj2 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (∃𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑥 = 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem eusvobj2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 euabsn2 3692 . . 3 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 ↔ ∃𝑧{𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧})
2 eleq2 2260 . . . . . 6 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (𝑥 ∈ {𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} ↔ 𝑥 ∈ {𝑧}))
3 abid 2184 . . . . . 6 (𝑥 ∈ {𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} ↔ ∃𝑦𝐴 𝑥 = 𝐵)
4 velsn 3640 . . . . . 6 (𝑥 ∈ {𝑧} ↔ 𝑥 = 𝑧)
52, 3, 43bitr3g 222 . . . . 5 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (∃𝑦𝐴 𝑥 = 𝐵𝑥 = 𝑧))
6 nfre1 2540 . . . . . . . . 9 𝑦𝑦𝐴 𝑥 = 𝐵
76nfab 2344 . . . . . . . 8 𝑦{𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵}
87nfeq1 2349 . . . . . . 7 𝑦{𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧}
9 eusvobj1.1 . . . . . . . . 9 𝐵 ∈ V
109elabrex 5807 . . . . . . . 8 (𝑦𝐴𝐵 ∈ {𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵})
11 eleq2 2260 . . . . . . . . 9 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (𝐵 ∈ {𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} ↔ 𝐵 ∈ {𝑧}))
129elsn 3639 . . . . . . . . . 10 (𝐵 ∈ {𝑧} ↔ 𝐵 = 𝑧)
13 eqcom 2198 . . . . . . . . . 10 (𝐵 = 𝑧𝑧 = 𝐵)
1412, 13bitri 184 . . . . . . . . 9 (𝐵 ∈ {𝑧} ↔ 𝑧 = 𝐵)
1511, 14bitrdi 196 . . . . . . . 8 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (𝐵 ∈ {𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} ↔ 𝑧 = 𝐵))
1610, 15imbitrid 154 . . . . . . 7 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (𝑦𝐴𝑧 = 𝐵))
178, 16ralrimi 2568 . . . . . 6 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → ∀𝑦𝐴 𝑧 = 𝐵)
18 eqeq1 2203 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝐵𝑧 = 𝐵))
1918ralbidv 2497 . . . . . 6 (𝑥 = 𝑧 → (∀𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑧 = 𝐵))
2017, 19syl5ibrcom 157 . . . . 5 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (𝑥 = 𝑧 → ∀𝑦𝐴 𝑥 = 𝐵))
215, 20sylbid 150 . . . 4 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (∃𝑦𝐴 𝑥 = 𝐵 → ∀𝑦𝐴 𝑥 = 𝐵))
2221exlimiv 1612 . . 3 (∃𝑧{𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (∃𝑦𝐴 𝑥 = 𝐵 → ∀𝑦𝐴 𝑥 = 𝐵))
231, 22sylbi 121 . 2 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (∃𝑦𝐴 𝑥 = 𝐵 → ∀𝑦𝐴 𝑥 = 𝐵))
24 euex 2075 . . 3 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → ∃𝑥𝑦𝐴 𝑥 = 𝐵)
25 rexm 3551 . . . 4 (∃𝑦𝐴 𝑥 = 𝐵 → ∃𝑦 𝑦𝐴)
2625exlimiv 1612 . . 3 (∃𝑥𝑦𝐴 𝑥 = 𝐵 → ∃𝑦 𝑦𝐴)
27 r19.2m 3538 . . . 4 ((∃𝑦 𝑦𝐴 ∧ ∀𝑦𝐴 𝑥 = 𝐵) → ∃𝑦𝐴 𝑥 = 𝐵)
2827ex 115 . . 3 (∃𝑦 𝑦𝐴 → (∀𝑦𝐴 𝑥 = 𝐵 → ∃𝑦𝐴 𝑥 = 𝐵))
2924, 26, 283syl 17 . 2 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (∀𝑦𝐴 𝑥 = 𝐵 → ∃𝑦𝐴 𝑥 = 𝐵))
3023, 29impbid 129 1 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (∃𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑥 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wex 1506  ∃!weu 2045  wcel 2167  {cab 2182  wral 2475  wrex 2476  Vcvv 2763  {csn 3623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-sn 3629
This theorem is referenced by:  eusvobj1  5912
  Copyright terms: Public domain W3C validator