ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidomni GIF version

Theorem exmidomni 7118
Description: Excluded middle is equivalent to every set being omniscient. (Contributed by BJ and Jim Kingdon, 30-Jun-2022.)
Assertion
Ref Expression
exmidomni (EXMID ↔ ∀𝑥 𝑥 ∈ Omni)

Proof of Theorem exmidomni
Dummy variables 𝑢 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exmidomniim 7117 . 2 (EXMID → ∀𝑥 𝑥 ∈ Omni)
2 vex 2733 . . . . . . . . . 10 𝑢 ∈ V
3 eleq1w 2231 . . . . . . . . . 10 (𝑥 = 𝑢 → (𝑥 ∈ Omni ↔ 𝑢 ∈ Omni))
42, 3spcv 2824 . . . . . . . . 9 (∀𝑥 𝑥 ∈ Omni → 𝑢 ∈ Omni)
5 xpeq1 4625 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → (𝑥 × {∅}) = (𝑢 × {∅}))
65fveq1d 5498 . . . . . . . . . . . . 13 (𝑥 = 𝑢 → ((𝑥 × {∅})‘𝑦) = ((𝑢 × {∅})‘𝑦))
76eqeq1d 2179 . . . . . . . . . . . 12 (𝑥 = 𝑢 → (((𝑥 × {∅})‘𝑦) = ∅ ↔ ((𝑢 × {∅})‘𝑦) = ∅))
87rexeqbi1dv 2674 . . . . . . . . . . 11 (𝑥 = 𝑢 → (∃𝑦𝑥 ((𝑥 × {∅})‘𝑦) = ∅ ↔ ∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅))
96eqeq1d 2179 . . . . . . . . . . . 12 (𝑥 = 𝑢 → (((𝑥 × {∅})‘𝑦) = 1o ↔ ((𝑢 × {∅})‘𝑦) = 1o))
109raleqbi1dv 2673 . . . . . . . . . . 11 (𝑥 = 𝑢 → (∀𝑦𝑥 ((𝑥 × {∅})‘𝑦) = 1o ↔ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o))
118, 10orbi12d 788 . . . . . . . . . 10 (𝑥 = 𝑢 → ((∃𝑦𝑥 ((𝑥 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑥 ((𝑥 × {∅})‘𝑦) = 1o) ↔ (∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o)))
12 vex 2733 . . . . . . . . . . . . 13 𝑥 ∈ V
13 isomni 7112 . . . . . . . . . . . . 13 (𝑥 ∈ V → (𝑥 ∈ Omni ↔ ∀𝑓(𝑓:𝑥⟶2o → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o))))
1412, 13ax-mp 5 . . . . . . . . . . . 12 (𝑥 ∈ Omni ↔ ∀𝑓(𝑓:𝑥⟶2o → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o)))
1514biimpi 119 . . . . . . . . . . 11 (𝑥 ∈ Omni → ∀𝑓(𝑓:𝑥⟶2o → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o)))
16 0ex 4116 . . . . . . . . . . . . . 14 ∅ ∈ V
1716prid1 3689 . . . . . . . . . . . . 13 ∅ ∈ {∅, 1o}
18 df2o3 6409 . . . . . . . . . . . . 13 2o = {∅, 1o}
1917, 18eleqtrri 2246 . . . . . . . . . . . 12 ∅ ∈ 2o
2019fconst6 5397 . . . . . . . . . . 11 (𝑥 × {∅}):𝑥⟶2o
21 p0ex 4174 . . . . . . . . . . . . 13 {∅} ∈ V
2212, 21xpex 4726 . . . . . . . . . . . 12 (𝑥 × {∅}) ∈ V
23 feq1 5330 . . . . . . . . . . . . 13 (𝑓 = (𝑥 × {∅}) → (𝑓:𝑥⟶2o ↔ (𝑥 × {∅}):𝑥⟶2o))
24 fveq1 5495 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑥 × {∅}) → (𝑓𝑦) = ((𝑥 × {∅})‘𝑦))
2524eqeq1d 2179 . . . . . . . . . . . . . . 15 (𝑓 = (𝑥 × {∅}) → ((𝑓𝑦) = ∅ ↔ ((𝑥 × {∅})‘𝑦) = ∅))
2625rexbidv 2471 . . . . . . . . . . . . . 14 (𝑓 = (𝑥 × {∅}) → (∃𝑦𝑥 (𝑓𝑦) = ∅ ↔ ∃𝑦𝑥 ((𝑥 × {∅})‘𝑦) = ∅))
2724eqeq1d 2179 . . . . . . . . . . . . . . 15 (𝑓 = (𝑥 × {∅}) → ((𝑓𝑦) = 1o ↔ ((𝑥 × {∅})‘𝑦) = 1o))
2827ralbidv 2470 . . . . . . . . . . . . . 14 (𝑓 = (𝑥 × {∅}) → (∀𝑦𝑥 (𝑓𝑦) = 1o ↔ ∀𝑦𝑥 ((𝑥 × {∅})‘𝑦) = 1o))
2926, 28orbi12d 788 . . . . . . . . . . . . 13 (𝑓 = (𝑥 × {∅}) → ((∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o) ↔ (∃𝑦𝑥 ((𝑥 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑥 ((𝑥 × {∅})‘𝑦) = 1o)))
3023, 29imbi12d 233 . . . . . . . . . . . 12 (𝑓 = (𝑥 × {∅}) → ((𝑓:𝑥⟶2o → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o)) ↔ ((𝑥 × {∅}):𝑥⟶2o → (∃𝑦𝑥 ((𝑥 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑥 ((𝑥 × {∅})‘𝑦) = 1o))))
3122, 30spcv 2824 . . . . . . . . . . 11 (∀𝑓(𝑓:𝑥⟶2o → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o)) → ((𝑥 × {∅}):𝑥⟶2o → (∃𝑦𝑥 ((𝑥 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑥 ((𝑥 × {∅})‘𝑦) = 1o)))
3215, 20, 31mpisyl 1439 . . . . . . . . . 10 (𝑥 ∈ Omni → (∃𝑦𝑥 ((𝑥 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑥 ((𝑥 × {∅})‘𝑦) = 1o))
3311, 32vtoclga 2796 . . . . . . . . 9 (𝑢 ∈ Omni → (∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o))
344, 33syl 14 . . . . . . . 8 (∀𝑥 𝑥 ∈ Omni → (∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o))
3534adantr 274 . . . . . . 7 ((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) → (∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o))
36 simplr 525 . . . . . . . . . 10 (((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅) → 𝑢 ⊆ {∅})
37 rexm 3514 . . . . . . . . . . . 12 (∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅ → ∃𝑦 𝑦𝑢)
38 sssnm 3741 . . . . . . . . . . . 12 (∃𝑦 𝑦𝑢 → (𝑢 ⊆ {∅} ↔ 𝑢 = {∅}))
3937, 38syl 14 . . . . . . . . . . 11 (∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅ → (𝑢 ⊆ {∅} ↔ 𝑢 = {∅}))
4039adantl 275 . . . . . . . . . 10 (((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅) → (𝑢 ⊆ {∅} ↔ 𝑢 = {∅}))
4136, 40mpbid 146 . . . . . . . . 9 (((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅) → 𝑢 = {∅})
4241ex 114 . . . . . . . 8 ((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) → (∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅ → 𝑢 = {∅}))
43 nfv 1521 . . . . . . . . . . . 12 𝑦(∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅})
44 nfra1 2501 . . . . . . . . . . . 12 𝑦𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o
4543, 44nfan 1558 . . . . . . . . . . 11 𝑦((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o)
46 nfcv 2312 . . . . . . . . . . 11 𝑦𝑢
47 nfcv 2312 . . . . . . . . . . 11 𝑦
48 1n0 6411 . . . . . . . . . . . . . 14 1o ≠ ∅
4948neii 2342 . . . . . . . . . . . . 13 ¬ 1o = ∅
50 simpr 109 . . . . . . . . . . . . . . . 16 (((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) → ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o)
5150r19.21bi 2558 . . . . . . . . . . . . . . 15 ((((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) ∧ 𝑦𝑢) → ((𝑢 × {∅})‘𝑦) = 1o)
5216fvconst2 5712 . . . . . . . . . . . . . . . 16 (𝑦𝑢 → ((𝑢 × {∅})‘𝑦) = ∅)
5352adantl 275 . . . . . . . . . . . . . . 15 ((((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) ∧ 𝑦𝑢) → ((𝑢 × {∅})‘𝑦) = ∅)
5451, 53eqtr3d 2205 . . . . . . . . . . . . . 14 ((((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) ∧ 𝑦𝑢) → 1o = ∅)
5554ex 114 . . . . . . . . . . . . 13 (((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) → (𝑦𝑢 → 1o = ∅))
5649, 55mtoi 659 . . . . . . . . . . . 12 (((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) → ¬ 𝑦𝑢)
5756pm2.21d 614 . . . . . . . . . . 11 (((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) → (𝑦𝑢𝑦 ∈ ∅))
5845, 46, 47, 57ssrd 3152 . . . . . . . . . 10 (((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) → 𝑢 ⊆ ∅)
59 ss0 3455 . . . . . . . . . 10 (𝑢 ⊆ ∅ → 𝑢 = ∅)
6058, 59syl 14 . . . . . . . . 9 (((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) → 𝑢 = ∅)
6160ex 114 . . . . . . . 8 ((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) → (∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o𝑢 = ∅))
6242, 61orim12d 781 . . . . . . 7 ((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) → ((∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) → (𝑢 = {∅} ∨ 𝑢 = ∅)))
6335, 62mpd 13 . . . . . 6 ((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) → (𝑢 = {∅} ∨ 𝑢 = ∅))
6463orcomd 724 . . . . 5 ((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) → (𝑢 = ∅ ∨ 𝑢 = {∅}))
6564ex 114 . . . 4 (∀𝑥 𝑥 ∈ Omni → (𝑢 ⊆ {∅} → (𝑢 = ∅ ∨ 𝑢 = {∅})))
6665alrimiv 1867 . . 3 (∀𝑥 𝑥 ∈ Omni → ∀𝑢(𝑢 ⊆ {∅} → (𝑢 = ∅ ∨ 𝑢 = {∅})))
67 exmid01 4184 . . 3 (EXMID ↔ ∀𝑢(𝑢 ⊆ {∅} → (𝑢 = ∅ ∨ 𝑢 = {∅})))
6866, 67sylibr 133 . 2 (∀𝑥 𝑥 ∈ Omni → EXMID)
691, 68impbii 125 1 (EXMID ↔ ∀𝑥 𝑥 ∈ Omni)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703  wal 1346   = wceq 1348  wex 1485  wcel 2141  wral 2448  wrex 2449  Vcvv 2730  wss 3121  c0 3414  {csn 3583  {cpr 3584  EXMIDwem 4180   × cxp 4609  wf 5194  cfv 5198  1oc1o 6388  2oc2o 6389  Omnicomni 7110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-exmid 4181  df-id 4278  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-1o 6395  df-2o 6396  df-omni 7111
This theorem is referenced by:  exmidlpo  7119
  Copyright terms: Public domain W3C validator