ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidomni GIF version

Theorem exmidomni 7317
Description: Excluded middle is equivalent to every set being omniscient. (Contributed by BJ and Jim Kingdon, 30-Jun-2022.)
Assertion
Ref Expression
exmidomni (EXMID ↔ ∀𝑥 𝑥 ∈ Omni)

Proof of Theorem exmidomni
Dummy variables 𝑢 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exmidomniim 7316 . 2 (EXMID → ∀𝑥 𝑥 ∈ Omni)
2 vex 2802 . . . . . . . . . 10 𝑢 ∈ V
3 eleq1w 2290 . . . . . . . . . 10 (𝑥 = 𝑢 → (𝑥 ∈ Omni ↔ 𝑢 ∈ Omni))
42, 3spcv 2897 . . . . . . . . 9 (∀𝑥 𝑥 ∈ Omni → 𝑢 ∈ Omni)
5 xpeq1 4733 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → (𝑥 × {∅}) = (𝑢 × {∅}))
65fveq1d 5631 . . . . . . . . . . . . 13 (𝑥 = 𝑢 → ((𝑥 × {∅})‘𝑦) = ((𝑢 × {∅})‘𝑦))
76eqeq1d 2238 . . . . . . . . . . . 12 (𝑥 = 𝑢 → (((𝑥 × {∅})‘𝑦) = ∅ ↔ ((𝑢 × {∅})‘𝑦) = ∅))
87rexeqbi1dv 2741 . . . . . . . . . . 11 (𝑥 = 𝑢 → (∃𝑦𝑥 ((𝑥 × {∅})‘𝑦) = ∅ ↔ ∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅))
96eqeq1d 2238 . . . . . . . . . . . 12 (𝑥 = 𝑢 → (((𝑥 × {∅})‘𝑦) = 1o ↔ ((𝑢 × {∅})‘𝑦) = 1o))
109raleqbi1dv 2740 . . . . . . . . . . 11 (𝑥 = 𝑢 → (∀𝑦𝑥 ((𝑥 × {∅})‘𝑦) = 1o ↔ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o))
118, 10orbi12d 798 . . . . . . . . . 10 (𝑥 = 𝑢 → ((∃𝑦𝑥 ((𝑥 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑥 ((𝑥 × {∅})‘𝑦) = 1o) ↔ (∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o)))
12 vex 2802 . . . . . . . . . . . . 13 𝑥 ∈ V
13 isomni 7311 . . . . . . . . . . . . 13 (𝑥 ∈ V → (𝑥 ∈ Omni ↔ ∀𝑓(𝑓:𝑥⟶2o → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o))))
1412, 13ax-mp 5 . . . . . . . . . . . 12 (𝑥 ∈ Omni ↔ ∀𝑓(𝑓:𝑥⟶2o → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o)))
1514biimpi 120 . . . . . . . . . . 11 (𝑥 ∈ Omni → ∀𝑓(𝑓:𝑥⟶2o → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o)))
16 0ex 4211 . . . . . . . . . . . . . 14 ∅ ∈ V
1716prid1 3772 . . . . . . . . . . . . 13 ∅ ∈ {∅, 1o}
18 df2o3 6583 . . . . . . . . . . . . 13 2o = {∅, 1o}
1917, 18eleqtrri 2305 . . . . . . . . . . . 12 ∅ ∈ 2o
2019fconst6 5527 . . . . . . . . . . 11 (𝑥 × {∅}):𝑥⟶2o
21 p0ex 4272 . . . . . . . . . . . . 13 {∅} ∈ V
2212, 21xpex 4834 . . . . . . . . . . . 12 (𝑥 × {∅}) ∈ V
23 feq1 5456 . . . . . . . . . . . . 13 (𝑓 = (𝑥 × {∅}) → (𝑓:𝑥⟶2o ↔ (𝑥 × {∅}):𝑥⟶2o))
24 fveq1 5628 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑥 × {∅}) → (𝑓𝑦) = ((𝑥 × {∅})‘𝑦))
2524eqeq1d 2238 . . . . . . . . . . . . . . 15 (𝑓 = (𝑥 × {∅}) → ((𝑓𝑦) = ∅ ↔ ((𝑥 × {∅})‘𝑦) = ∅))
2625rexbidv 2531 . . . . . . . . . . . . . 14 (𝑓 = (𝑥 × {∅}) → (∃𝑦𝑥 (𝑓𝑦) = ∅ ↔ ∃𝑦𝑥 ((𝑥 × {∅})‘𝑦) = ∅))
2724eqeq1d 2238 . . . . . . . . . . . . . . 15 (𝑓 = (𝑥 × {∅}) → ((𝑓𝑦) = 1o ↔ ((𝑥 × {∅})‘𝑦) = 1o))
2827ralbidv 2530 . . . . . . . . . . . . . 14 (𝑓 = (𝑥 × {∅}) → (∀𝑦𝑥 (𝑓𝑦) = 1o ↔ ∀𝑦𝑥 ((𝑥 × {∅})‘𝑦) = 1o))
2926, 28orbi12d 798 . . . . . . . . . . . . 13 (𝑓 = (𝑥 × {∅}) → ((∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o) ↔ (∃𝑦𝑥 ((𝑥 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑥 ((𝑥 × {∅})‘𝑦) = 1o)))
3023, 29imbi12d 234 . . . . . . . . . . . 12 (𝑓 = (𝑥 × {∅}) → ((𝑓:𝑥⟶2o → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o)) ↔ ((𝑥 × {∅}):𝑥⟶2o → (∃𝑦𝑥 ((𝑥 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑥 ((𝑥 × {∅})‘𝑦) = 1o))))
3122, 30spcv 2897 . . . . . . . . . . 11 (∀𝑓(𝑓:𝑥⟶2o → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o)) → ((𝑥 × {∅}):𝑥⟶2o → (∃𝑦𝑥 ((𝑥 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑥 ((𝑥 × {∅})‘𝑦) = 1o)))
3215, 20, 31mpisyl 1489 . . . . . . . . . 10 (𝑥 ∈ Omni → (∃𝑦𝑥 ((𝑥 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑥 ((𝑥 × {∅})‘𝑦) = 1o))
3311, 32vtoclga 2867 . . . . . . . . 9 (𝑢 ∈ Omni → (∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o))
344, 33syl 14 . . . . . . . 8 (∀𝑥 𝑥 ∈ Omni → (∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o))
3534adantr 276 . . . . . . 7 ((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) → (∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o))
36 simplr 528 . . . . . . . . . 10 (((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅) → 𝑢 ⊆ {∅})
37 rexm 3591 . . . . . . . . . . . 12 (∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅ → ∃𝑦 𝑦𝑢)
38 sssnm 3832 . . . . . . . . . . . 12 (∃𝑦 𝑦𝑢 → (𝑢 ⊆ {∅} ↔ 𝑢 = {∅}))
3937, 38syl 14 . . . . . . . . . . 11 (∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅ → (𝑢 ⊆ {∅} ↔ 𝑢 = {∅}))
4039adantl 277 . . . . . . . . . 10 (((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅) → (𝑢 ⊆ {∅} ↔ 𝑢 = {∅}))
4136, 40mpbid 147 . . . . . . . . 9 (((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅) → 𝑢 = {∅})
4241ex 115 . . . . . . . 8 ((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) → (∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅ → 𝑢 = {∅}))
43 nfv 1574 . . . . . . . . . . . 12 𝑦(∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅})
44 nfra1 2561 . . . . . . . . . . . 12 𝑦𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o
4543, 44nfan 1611 . . . . . . . . . . 11 𝑦((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o)
46 nfcv 2372 . . . . . . . . . . 11 𝑦𝑢
47 nfcv 2372 . . . . . . . . . . 11 𝑦
48 1n0 6586 . . . . . . . . . . . . . 14 1o ≠ ∅
4948neii 2402 . . . . . . . . . . . . 13 ¬ 1o = ∅
50 simpr 110 . . . . . . . . . . . . . . . 16 (((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) → ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o)
5150r19.21bi 2618 . . . . . . . . . . . . . . 15 ((((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) ∧ 𝑦𝑢) → ((𝑢 × {∅})‘𝑦) = 1o)
5216fvconst2 5859 . . . . . . . . . . . . . . . 16 (𝑦𝑢 → ((𝑢 × {∅})‘𝑦) = ∅)
5352adantl 277 . . . . . . . . . . . . . . 15 ((((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) ∧ 𝑦𝑢) → ((𝑢 × {∅})‘𝑦) = ∅)
5451, 53eqtr3d 2264 . . . . . . . . . . . . . 14 ((((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) ∧ 𝑦𝑢) → 1o = ∅)
5554ex 115 . . . . . . . . . . . . 13 (((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) → (𝑦𝑢 → 1o = ∅))
5649, 55mtoi 668 . . . . . . . . . . . 12 (((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) → ¬ 𝑦𝑢)
5756pm2.21d 622 . . . . . . . . . . 11 (((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) → (𝑦𝑢𝑦 ∈ ∅))
5845, 46, 47, 57ssrd 3229 . . . . . . . . . 10 (((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) → 𝑢 ⊆ ∅)
59 ss0 3532 . . . . . . . . . 10 (𝑢 ⊆ ∅ → 𝑢 = ∅)
6058, 59syl 14 . . . . . . . . 9 (((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) ∧ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) → 𝑢 = ∅)
6160ex 115 . . . . . . . 8 ((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) → (∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o𝑢 = ∅))
6242, 61orim12d 791 . . . . . . 7 ((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) → ((∃𝑦𝑢 ((𝑢 × {∅})‘𝑦) = ∅ ∨ ∀𝑦𝑢 ((𝑢 × {∅})‘𝑦) = 1o) → (𝑢 = {∅} ∨ 𝑢 = ∅)))
6335, 62mpd 13 . . . . . 6 ((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) → (𝑢 = {∅} ∨ 𝑢 = ∅))
6463orcomd 734 . . . . 5 ((∀𝑥 𝑥 ∈ Omni ∧ 𝑢 ⊆ {∅}) → (𝑢 = ∅ ∨ 𝑢 = {∅}))
6564ex 115 . . . 4 (∀𝑥 𝑥 ∈ Omni → (𝑢 ⊆ {∅} → (𝑢 = ∅ ∨ 𝑢 = {∅})))
6665alrimiv 1920 . . 3 (∀𝑥 𝑥 ∈ Omni → ∀𝑢(𝑢 ⊆ {∅} → (𝑢 = ∅ ∨ 𝑢 = {∅})))
67 exmid01 4282 . . 3 (EXMID ↔ ∀𝑢(𝑢 ⊆ {∅} → (𝑢 = ∅ ∨ 𝑢 = {∅})))
6866, 67sylibr 134 . 2 (∀𝑥 𝑥 ∈ Omni → EXMID)
691, 68impbii 126 1 (EXMID ↔ ∀𝑥 𝑥 ∈ Omni)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713  wal 1393   = wceq 1395  wex 1538  wcel 2200  wral 2508  wrex 2509  Vcvv 2799  wss 3197  c0 3491  {csn 3666  {cpr 3667  EXMIDwem 4278   × cxp 4717  wf 5314  cfv 5318  1oc1o 6561  2oc2o 6562  Omnicomni 7309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-exmid 4279  df-id 4384  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-1o 6568  df-2o 6569  df-omni 7310
This theorem is referenced by:  exmidlpo  7318
  Copyright terms: Public domain W3C validator