Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ismnd | GIF version |
Description: The predicate "is a monoid". This is the defining theorem of a monoid by showing that a set is a monoid if and only if it is a set equipped with a closed, everywhere defined internal operation (so, a magma, see mndcl 12690), whose operation is associative (so, a semigroup, see also mndass 12691) and has a two-sided neutral element (see mndid 12692). (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.) |
Ref | Expression |
---|---|
ismnd.b | ⊢ 𝐵 = (Base‘𝐺) |
ismnd.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
ismnd | ⊢ (𝐺 ∈ Mnd ↔ (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐 ∈ 𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismnd.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | ismnd.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | 1, 2 | ismnddef 12685 | . 2 ⊢ (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))) |
4 | rexm 3520 | . . . . 5 ⊢ (∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎) → ∃𝑒 𝑒 ∈ 𝐵) | |
5 | eleq1w 2236 | . . . . . 6 ⊢ (𝑒 = 𝑤 → (𝑒 ∈ 𝐵 ↔ 𝑤 ∈ 𝐵)) | |
6 | 5 | cbvexv 1916 | . . . . 5 ⊢ (∃𝑒 𝑒 ∈ 𝐵 ↔ ∃𝑤 𝑤 ∈ 𝐵) |
7 | 4, 6 | sylib 122 | . . . 4 ⊢ (∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎) → ∃𝑤 𝑤 ∈ 𝐵) |
8 | 1 | basmex 12487 | . . . . 5 ⊢ (𝑤 ∈ 𝐵 → 𝐺 ∈ V) |
9 | 8 | exlimiv 1596 | . . . 4 ⊢ (∃𝑤 𝑤 ∈ 𝐵 → 𝐺 ∈ V) |
10 | 1, 2 | issgrpv 12676 | . . . 4 ⊢ (𝐺 ∈ V → (𝐺 ∈ Smgrp ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐 ∈ 𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))))) |
11 | 7, 9, 10 | 3syl 17 | . . 3 ⊢ (∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎) → (𝐺 ∈ Smgrp ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐 ∈ 𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))))) |
12 | 11 | pm5.32ri 455 | . 2 ⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)) ↔ (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐 ∈ 𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))) |
13 | 3, 12 | bitri 184 | 1 ⊢ (𝐺 ∈ Mnd ↔ (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐 ∈ 𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1353 ∃wex 1490 ∈ wcel 2146 ∀wral 2453 ∃wrex 2454 Vcvv 2735 ‘cfv 5208 (class class class)co 5865 Basecbs 12429 +gcplusg 12493 Smgrpcsgrp 12673 Mndcmnd 12683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-ov 5868 df-inn 8893 df-2 8951 df-ndx 12432 df-slot 12433 df-base 12435 df-plusg 12506 df-mgm 12641 df-sgrp 12674 df-mnd 12684 |
This theorem is referenced by: mndid 12692 ismndd 12704 mndpropd 12707 mhmmnd 12841 |
Copyright terms: Public domain | W3C validator |