ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismnd GIF version

Theorem ismnd 13447
Description: The predicate "is a monoid". This is the defining theorem of a monoid by showing that a set is a monoid if and only if it is a set equipped with a closed, everywhere defined internal operation (so, a magma, see mndcl 13451), whose operation is associative (so, a semigroup, see also mndass 13452) and has a two-sided neutral element (see mndid 13453). (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.)
Hypotheses
Ref Expression
ismnd.b 𝐵 = (Base‘𝐺)
ismnd.p + = (+g𝐺)
Assertion
Ref Expression
ismnd (𝐺 ∈ Mnd ↔ (∀𝑎𝐵𝑏𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
Distinct variable groups:   𝐵,𝑎,𝑏,𝑐   𝐵,𝑒,𝑎   𝐺,𝑎,𝑏,𝑐   + ,𝑎,𝑒   + ,𝑏,𝑐
Allowed substitution hint:   𝐺(𝑒)

Proof of Theorem ismnd
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ismnd.b . . 3 𝐵 = (Base‘𝐺)
2 ismnd.p . . 3 + = (+g𝐺)
31, 2ismnddef 13446 . 2 (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
4 rexm 3591 . . . . 5 (∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎) → ∃𝑒 𝑒𝐵)
5 eleq1w 2290 . . . . . 6 (𝑒 = 𝑤 → (𝑒𝐵𝑤𝐵))
65cbvexv 1965 . . . . 5 (∃𝑒 𝑒𝐵 ↔ ∃𝑤 𝑤𝐵)
74, 6sylib 122 . . . 4 (∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎) → ∃𝑤 𝑤𝐵)
81basmex 13087 . . . . 5 (𝑤𝐵𝐺 ∈ V)
98exlimiv 1644 . . . 4 (∃𝑤 𝑤𝐵𝐺 ∈ V)
101, 2issgrpv 13432 . . . 4 (𝐺 ∈ V → (𝐺 ∈ Smgrp ↔ ∀𝑎𝐵𝑏𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐)))))
117, 9, 103syl 17 . . 3 (∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎) → (𝐺 ∈ Smgrp ↔ ∀𝑎𝐵𝑏𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐)))))
1211pm5.32ri 455 . 2 ((𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)) ↔ (∀𝑎𝐵𝑏𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
133, 12bitri 184 1 (𝐺 ∈ Mnd ↔ (∀𝑎𝐵𝑏𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1395  wex 1538  wcel 2200  wral 2508  wrex 2509  Vcvv 2799  cfv 5317  (class class class)co 6000  Basecbs 13027  +gcplusg 13105  Smgrpcsgrp 13429  Mndcmnd 13444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-ov 6003  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-mgm 13384  df-sgrp 13430  df-mnd 13445
This theorem is referenced by:  mndid  13453  ismndd  13465  mndpropd  13468  mhmmnd  13648
  Copyright terms: Public domain W3C validator