![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ismnd | GIF version |
Description: The predicate "is a monoid". This is the defining theorem of a monoid by showing that a set is a monoid if and only if it is a set equipped with a closed, everywhere defined internal operation (so, a magma, see mndcl 12824), whose operation is associative (so, a semigroup, see also mndass 12825) and has a two-sided neutral element (see mndid 12826). (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.) |
Ref | Expression |
---|---|
ismnd.b | ⊢ 𝐵 = (Base‘𝐺) |
ismnd.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
ismnd | ⊢ (𝐺 ∈ Mnd ↔ (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐 ∈ 𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismnd.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | ismnd.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | 1, 2 | ismnddef 12819 | . 2 ⊢ (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))) |
4 | rexm 3523 | . . . . 5 ⊢ (∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎) → ∃𝑒 𝑒 ∈ 𝐵) | |
5 | eleq1w 2238 | . . . . . 6 ⊢ (𝑒 = 𝑤 → (𝑒 ∈ 𝐵 ↔ 𝑤 ∈ 𝐵)) | |
6 | 5 | cbvexv 1918 | . . . . 5 ⊢ (∃𝑒 𝑒 ∈ 𝐵 ↔ ∃𝑤 𝑤 ∈ 𝐵) |
7 | 4, 6 | sylib 122 | . . . 4 ⊢ (∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎) → ∃𝑤 𝑤 ∈ 𝐵) |
8 | 1 | basmex 12521 | . . . . 5 ⊢ (𝑤 ∈ 𝐵 → 𝐺 ∈ V) |
9 | 8 | exlimiv 1598 | . . . 4 ⊢ (∃𝑤 𝑤 ∈ 𝐵 → 𝐺 ∈ V) |
10 | 1, 2 | issgrpv 12810 | . . . 4 ⊢ (𝐺 ∈ V → (𝐺 ∈ Smgrp ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐 ∈ 𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))))) |
11 | 7, 9, 10 | 3syl 17 | . . 3 ⊢ (∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎) → (𝐺 ∈ Smgrp ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐 ∈ 𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))))) |
12 | 11 | pm5.32ri 455 | . 2 ⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)) ↔ (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐 ∈ 𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))) |
13 | 3, 12 | bitri 184 | 1 ⊢ (𝐺 ∈ Mnd ↔ (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐 ∈ 𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1353 ∃wex 1492 ∈ wcel 2148 ∀wral 2455 ∃wrex 2456 Vcvv 2738 ‘cfv 5217 (class class class)co 5875 Basecbs 12462 +gcplusg 12536 Smgrpcsgrp 12807 Mndcmnd 12817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-cnex 7902 ax-resscn 7903 ax-1re 7905 ax-addrcl 7908 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2740 df-sbc 2964 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-iota 5179 df-fun 5219 df-fn 5220 df-fv 5225 df-ov 5878 df-inn 8920 df-2 8978 df-ndx 12465 df-slot 12466 df-base 12468 df-plusg 12549 df-mgm 12775 df-sgrp 12808 df-mnd 12818 |
This theorem is referenced by: mndid 12826 ismndd 12838 mndpropd 12841 mhmmnd 12980 |
Copyright terms: Public domain | W3C validator |