ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexn0 GIF version

Theorem rexn0 3536
Description: Restricted existential quantification implies its restriction is nonempty (it is also inhabited as shown in rexm 3537). (Contributed by Szymon Jaroszewicz, 3-Apr-2007.)
Assertion
Ref Expression
rexn0 (∃𝑥𝐴 𝜑𝐴 ≠ ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexn0
StepHypRef Expression
1 ne0i 3444 . . 3 (𝑥𝐴𝐴 ≠ ∅)
21a1d 22 . 2 (𝑥𝐴 → (𝜑𝐴 ≠ ∅))
32rexlimiv 2601 1 (∃𝑥𝐴 𝜑𝐴 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2160  wne 2360  wrex 2469  c0 3437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-v 2754  df-dif 3146  df-nul 3438
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator