| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexn0 | GIF version | ||
| Description: Restricted existential quantification implies its restriction is nonempty (it is also inhabited as shown in rexm 3561). (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) |
| Ref | Expression |
|---|---|
| rexn0 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i 3468 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐴 ≠ ∅) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝐴 ≠ ∅)) |
| 3 | 2 | rexlimiv 2618 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ≠ wne 2377 ∃wrex 2486 ∅c0 3461 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3169 df-nul 3462 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |