ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexn0 GIF version

Theorem rexn0 3507
Description: Restricted existential quantification implies its restriction is nonempty (it is also inhabited as shown in rexm 3508). (Contributed by Szymon Jaroszewicz, 3-Apr-2007.)
Assertion
Ref Expression
rexn0 (∃𝑥𝐴 𝜑𝐴 ≠ ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexn0
StepHypRef Expression
1 ne0i 3415 . . 3 (𝑥𝐴𝐴 ≠ ∅)
21a1d 22 . 2 (𝑥𝐴 → (𝜑𝐴 ≠ ∅))
32rexlimiv 2577 1 (∃𝑥𝐴 𝜑𝐴 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2136  wne 2336  wrex 2445  c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-nul 3410
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator