Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexn0 | GIF version |
Description: Restricted existential quantification implies its restriction is nonempty (it is also inhabited as shown in rexm 3493). (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) |
Ref | Expression |
---|---|
rexn0 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 3400 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐴 ≠ ∅) | |
2 | 1 | a1d 22 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝐴 ≠ ∅)) |
3 | 2 | rexlimiv 2568 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2128 ≠ wne 2327 ∃wrex 2436 ∅c0 3394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-v 2714 df-dif 3104 df-nul 3395 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |