ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexn0 GIF version

Theorem rexn0 3549
Description: Restricted existential quantification implies its restriction is nonempty (it is also inhabited as shown in rexm 3550). (Contributed by Szymon Jaroszewicz, 3-Apr-2007.)
Assertion
Ref Expression
rexn0 (∃𝑥𝐴 𝜑𝐴 ≠ ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexn0
StepHypRef Expression
1 ne0i 3457 . . 3 (𝑥𝐴𝐴 ≠ ∅)
21a1d 22 . 2 (𝑥𝐴 → (𝜑𝐴 ≠ ∅))
32rexlimiv 2608 1 (∃𝑥𝐴 𝜑𝐴 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  wne 2367  wrex 2476  c0 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-nul 3451
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator