| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrelimasn | GIF version | ||
| Description: Elementhood in the image of a singleton. (Contributed by Mario Carneiro, 3-Nov-2015.) |
| Ref | Expression |
|---|---|
| elrelimasn | ⊢ (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimag 5025 | . . . . . 6 ⊢ (𝐵 ∈ (𝑅 “ {𝐴}) → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ ∃𝑦 ∈ {𝐴}𝑦𝑅𝐵)) | |
| 2 | 1 | ibi 176 | . . . . 5 ⊢ (𝐵 ∈ (𝑅 “ {𝐴}) → ∃𝑦 ∈ {𝐴}𝑦𝑅𝐵) |
| 3 | rexm 3559 | . . . . 5 ⊢ (∃𝑦 ∈ {𝐴}𝑦𝑅𝐵 → ∃𝑦 𝑦 ∈ {𝐴}) | |
| 4 | elsni 3650 | . . . . . 6 ⊢ (𝑦 ∈ {𝐴} → 𝑦 = 𝐴) | |
| 5 | 4 | eximi 1622 | . . . . 5 ⊢ (∃𝑦 𝑦 ∈ {𝐴} → ∃𝑦 𝑦 = 𝐴) |
| 6 | 2, 3, 5 | 3syl 17 | . . . 4 ⊢ (𝐵 ∈ (𝑅 “ {𝐴}) → ∃𝑦 𝑦 = 𝐴) |
| 7 | isset 2777 | . . . 4 ⊢ (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴) | |
| 8 | 6, 7 | sylibr 134 | . . 3 ⊢ (𝐵 ∈ (𝑅 “ {𝐴}) → 𝐴 ∈ V) |
| 9 | 8 | a1i 9 | . 2 ⊢ (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) → 𝐴 ∈ V)) |
| 10 | brrelex1 4713 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
| 11 | 10 | ex 115 | . 2 ⊢ (Rel 𝑅 → (𝐴𝑅𝐵 → 𝐴 ∈ V)) |
| 12 | imasng 5046 | . . . . 5 ⊢ (𝐴 ∈ V → (𝑅 “ {𝐴}) = {𝑥 ∣ 𝐴𝑅𝑥}) | |
| 13 | 12 | eleq2d 2274 | . . . 4 ⊢ (𝐴 ∈ V → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐵 ∈ {𝑥 ∣ 𝐴𝑅𝑥})) |
| 14 | brrelex2 4715 | . . . . . 6 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) | |
| 15 | 14 | ex 115 | . . . . 5 ⊢ (Rel 𝑅 → (𝐴𝑅𝐵 → 𝐵 ∈ V)) |
| 16 | breq2 4047 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
| 17 | 16 | elab3g 2923 | . . . . 5 ⊢ ((𝐴𝑅𝐵 → 𝐵 ∈ V) → (𝐵 ∈ {𝑥 ∣ 𝐴𝑅𝑥} ↔ 𝐴𝑅𝐵)) |
| 18 | 15, 17 | syl 14 | . . . 4 ⊢ (Rel 𝑅 → (𝐵 ∈ {𝑥 ∣ 𝐴𝑅𝑥} ↔ 𝐴𝑅𝐵)) |
| 19 | 13, 18 | sylan9bbr 463 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ V) → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵)) |
| 20 | 19 | ex 115 | . 2 ⊢ (Rel 𝑅 → (𝐴 ∈ V → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵))) |
| 21 | 9, 11, 20 | pm5.21ndd 706 | 1 ⊢ (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1372 ∃wex 1514 ∈ wcel 2175 {cab 2190 ∃wrex 2484 Vcvv 2771 {csn 3632 class class class wbr 4043 “ cima 4677 Rel wrel 4679 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-xp 4680 df-rel 4681 df-cnv 4682 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 |
| This theorem is referenced by: eliniseg2 5061 |
| Copyright terms: Public domain | W3C validator |