ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrelimasn GIF version

Theorem elrelimasn 5062
Description: Elementhood in the image of a singleton. (Contributed by Mario Carneiro, 3-Nov-2015.)
Assertion
Ref Expression
elrelimasn (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵))

Proof of Theorem elrelimasn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elimag 5040 . . . . . 6 (𝐵 ∈ (𝑅 “ {𝐴}) → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ ∃𝑦 ∈ {𝐴}𝑦𝑅𝐵))
21ibi 176 . . . . 5 (𝐵 ∈ (𝑅 “ {𝐴}) → ∃𝑦 ∈ {𝐴}𝑦𝑅𝐵)
3 rexm 3564 . . . . 5 (∃𝑦 ∈ {𝐴}𝑦𝑅𝐵 → ∃𝑦 𝑦 ∈ {𝐴})
4 elsni 3656 . . . . . 6 (𝑦 ∈ {𝐴} → 𝑦 = 𝐴)
54eximi 1624 . . . . 5 (∃𝑦 𝑦 ∈ {𝐴} → ∃𝑦 𝑦 = 𝐴)
62, 3, 53syl 17 . . . 4 (𝐵 ∈ (𝑅 “ {𝐴}) → ∃𝑦 𝑦 = 𝐴)
7 isset 2780 . . . 4 (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴)
86, 7sylibr 134 . . 3 (𝐵 ∈ (𝑅 “ {𝐴}) → 𝐴 ∈ V)
98a1i 9 . 2 (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) → 𝐴 ∈ V))
10 brrelex1 4727 . . 3 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
1110ex 115 . 2 (Rel 𝑅 → (𝐴𝑅𝐵𝐴 ∈ V))
12 imasng 5061 . . . . 5 (𝐴 ∈ V → (𝑅 “ {𝐴}) = {𝑥𝐴𝑅𝑥})
1312eleq2d 2276 . . . 4 (𝐴 ∈ V → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐵 ∈ {𝑥𝐴𝑅𝑥}))
14 brrelex2 4729 . . . . . 6 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)
1514ex 115 . . . . 5 (Rel 𝑅 → (𝐴𝑅𝐵𝐵 ∈ V))
16 breq2 4058 . . . . . 6 (𝑥 = 𝐵 → (𝐴𝑅𝑥𝐴𝑅𝐵))
1716elab3g 2928 . . . . 5 ((𝐴𝑅𝐵𝐵 ∈ V) → (𝐵 ∈ {𝑥𝐴𝑅𝑥} ↔ 𝐴𝑅𝐵))
1815, 17syl 14 . . . 4 (Rel 𝑅 → (𝐵 ∈ {𝑥𝐴𝑅𝑥} ↔ 𝐴𝑅𝐵))
1913, 18sylan9bbr 463 . . 3 ((Rel 𝑅𝐴 ∈ V) → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵))
2019ex 115 . 2 (Rel 𝑅 → (𝐴 ∈ V → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵)))
219, 11, 20pm5.21ndd 707 1 (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wex 1516  wcel 2177  {cab 2192  wrex 2486  Vcvv 2773  {csn 3638   class class class wbr 4054  cima 4691  Rel wrel 4693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4055  df-opab 4117  df-xp 4694  df-rel 4695  df-cnv 4696  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701
This theorem is referenced by:  eliniseg2  5076
  Copyright terms: Public domain W3C validator