ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrelimasn GIF version

Theorem elrelimasn 5031
Description: Elementhood in the image of a singleton. (Contributed by Mario Carneiro, 3-Nov-2015.)
Assertion
Ref Expression
elrelimasn (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵))

Proof of Theorem elrelimasn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elimag 5009 . . . . . 6 (𝐵 ∈ (𝑅 “ {𝐴}) → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ ∃𝑦 ∈ {𝐴}𝑦𝑅𝐵))
21ibi 176 . . . . 5 (𝐵 ∈ (𝑅 “ {𝐴}) → ∃𝑦 ∈ {𝐴}𝑦𝑅𝐵)
3 rexm 3546 . . . . 5 (∃𝑦 ∈ {𝐴}𝑦𝑅𝐵 → ∃𝑦 𝑦 ∈ {𝐴})
4 elsni 3636 . . . . . 6 (𝑦 ∈ {𝐴} → 𝑦 = 𝐴)
54eximi 1611 . . . . 5 (∃𝑦 𝑦 ∈ {𝐴} → ∃𝑦 𝑦 = 𝐴)
62, 3, 53syl 17 . . . 4 (𝐵 ∈ (𝑅 “ {𝐴}) → ∃𝑦 𝑦 = 𝐴)
7 isset 2766 . . . 4 (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴)
86, 7sylibr 134 . . 3 (𝐵 ∈ (𝑅 “ {𝐴}) → 𝐴 ∈ V)
98a1i 9 . 2 (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) → 𝐴 ∈ V))
10 brrelex1 4698 . . 3 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
1110ex 115 . 2 (Rel 𝑅 → (𝐴𝑅𝐵𝐴 ∈ V))
12 imasng 5030 . . . . 5 (𝐴 ∈ V → (𝑅 “ {𝐴}) = {𝑥𝐴𝑅𝑥})
1312eleq2d 2263 . . . 4 (𝐴 ∈ V → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐵 ∈ {𝑥𝐴𝑅𝑥}))
14 brrelex2 4700 . . . . . 6 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)
1514ex 115 . . . . 5 (Rel 𝑅 → (𝐴𝑅𝐵𝐵 ∈ V))
16 breq2 4033 . . . . . 6 (𝑥 = 𝐵 → (𝐴𝑅𝑥𝐴𝑅𝐵))
1716elab3g 2911 . . . . 5 ((𝐴𝑅𝐵𝐵 ∈ V) → (𝐵 ∈ {𝑥𝐴𝑅𝑥} ↔ 𝐴𝑅𝐵))
1815, 17syl 14 . . . 4 (Rel 𝑅 → (𝐵 ∈ {𝑥𝐴𝑅𝑥} ↔ 𝐴𝑅𝐵))
1913, 18sylan9bbr 463 . . 3 ((Rel 𝑅𝐴 ∈ V) → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵))
2019ex 115 . 2 (Rel 𝑅 → (𝐴 ∈ V → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵)))
219, 11, 20pm5.21ndd 706 1 (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wex 1503  wcel 2164  {cab 2179  wrex 2473  Vcvv 2760  {csn 3618   class class class wbr 4029  cima 4662  Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672
This theorem is referenced by:  eliniseg2  5045
  Copyright terms: Public domain W3C validator