![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elrelimasn | GIF version |
Description: Elementhood in the image of a singleton. (Contributed by Mario Carneiro, 3-Nov-2015.) |
Ref | Expression |
---|---|
elrelimasn | ⊢ (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimag 5010 | . . . . . 6 ⊢ (𝐵 ∈ (𝑅 “ {𝐴}) → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ ∃𝑦 ∈ {𝐴}𝑦𝑅𝐵)) | |
2 | 1 | ibi 176 | . . . . 5 ⊢ (𝐵 ∈ (𝑅 “ {𝐴}) → ∃𝑦 ∈ {𝐴}𝑦𝑅𝐵) |
3 | rexm 3547 | . . . . 5 ⊢ (∃𝑦 ∈ {𝐴}𝑦𝑅𝐵 → ∃𝑦 𝑦 ∈ {𝐴}) | |
4 | elsni 3637 | . . . . . 6 ⊢ (𝑦 ∈ {𝐴} → 𝑦 = 𝐴) | |
5 | 4 | eximi 1611 | . . . . 5 ⊢ (∃𝑦 𝑦 ∈ {𝐴} → ∃𝑦 𝑦 = 𝐴) |
6 | 2, 3, 5 | 3syl 17 | . . . 4 ⊢ (𝐵 ∈ (𝑅 “ {𝐴}) → ∃𝑦 𝑦 = 𝐴) |
7 | isset 2766 | . . . 4 ⊢ (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴) | |
8 | 6, 7 | sylibr 134 | . . 3 ⊢ (𝐵 ∈ (𝑅 “ {𝐴}) → 𝐴 ∈ V) |
9 | 8 | a1i 9 | . 2 ⊢ (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) → 𝐴 ∈ V)) |
10 | brrelex1 4699 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
11 | 10 | ex 115 | . 2 ⊢ (Rel 𝑅 → (𝐴𝑅𝐵 → 𝐴 ∈ V)) |
12 | imasng 5031 | . . . . 5 ⊢ (𝐴 ∈ V → (𝑅 “ {𝐴}) = {𝑥 ∣ 𝐴𝑅𝑥}) | |
13 | 12 | eleq2d 2263 | . . . 4 ⊢ (𝐴 ∈ V → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐵 ∈ {𝑥 ∣ 𝐴𝑅𝑥})) |
14 | brrelex2 4701 | . . . . . 6 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) | |
15 | 14 | ex 115 | . . . . 5 ⊢ (Rel 𝑅 → (𝐴𝑅𝐵 → 𝐵 ∈ V)) |
16 | breq2 4034 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
17 | 16 | elab3g 2912 | . . . . 5 ⊢ ((𝐴𝑅𝐵 → 𝐵 ∈ V) → (𝐵 ∈ {𝑥 ∣ 𝐴𝑅𝑥} ↔ 𝐴𝑅𝐵)) |
18 | 15, 17 | syl 14 | . . . 4 ⊢ (Rel 𝑅 → (𝐵 ∈ {𝑥 ∣ 𝐴𝑅𝑥} ↔ 𝐴𝑅𝐵)) |
19 | 13, 18 | sylan9bbr 463 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ V) → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵)) |
20 | 19 | ex 115 | . 2 ⊢ (Rel 𝑅 → (𝐴 ∈ V → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵))) |
21 | 9, 11, 20 | pm5.21ndd 706 | 1 ⊢ (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∃wex 1503 ∈ wcel 2164 {cab 2179 ∃wrex 2473 Vcvv 2760 {csn 3619 class class class wbr 4030 “ cima 4663 Rel wrel 4665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-rel 4667 df-cnv 4668 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 |
This theorem is referenced by: eliniseg2 5046 |
Copyright terms: Public domain | W3C validator |