ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrelimasn GIF version

Theorem elrelimasn 5093
Description: Elementhood in the image of a singleton. (Contributed by Mario Carneiro, 3-Nov-2015.)
Assertion
Ref Expression
elrelimasn (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵))

Proof of Theorem elrelimasn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elimag 5071 . . . . . 6 (𝐵 ∈ (𝑅 “ {𝐴}) → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ ∃𝑦 ∈ {𝐴}𝑦𝑅𝐵))
21ibi 176 . . . . 5 (𝐵 ∈ (𝑅 “ {𝐴}) → ∃𝑦 ∈ {𝐴}𝑦𝑅𝐵)
3 rexm 3591 . . . . 5 (∃𝑦 ∈ {𝐴}𝑦𝑅𝐵 → ∃𝑦 𝑦 ∈ {𝐴})
4 elsni 3684 . . . . . 6 (𝑦 ∈ {𝐴} → 𝑦 = 𝐴)
54eximi 1646 . . . . 5 (∃𝑦 𝑦 ∈ {𝐴} → ∃𝑦 𝑦 = 𝐴)
62, 3, 53syl 17 . . . 4 (𝐵 ∈ (𝑅 “ {𝐴}) → ∃𝑦 𝑦 = 𝐴)
7 isset 2806 . . . 4 (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴)
86, 7sylibr 134 . . 3 (𝐵 ∈ (𝑅 “ {𝐴}) → 𝐴 ∈ V)
98a1i 9 . 2 (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) → 𝐴 ∈ V))
10 brrelex1 4757 . . 3 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
1110ex 115 . 2 (Rel 𝑅 → (𝐴𝑅𝐵𝐴 ∈ V))
12 imasng 5092 . . . . 5 (𝐴 ∈ V → (𝑅 “ {𝐴}) = {𝑥𝐴𝑅𝑥})
1312eleq2d 2299 . . . 4 (𝐴 ∈ V → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐵 ∈ {𝑥𝐴𝑅𝑥}))
14 brrelex2 4759 . . . . . 6 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)
1514ex 115 . . . . 5 (Rel 𝑅 → (𝐴𝑅𝐵𝐵 ∈ V))
16 breq2 4086 . . . . . 6 (𝑥 = 𝐵 → (𝐴𝑅𝑥𝐴𝑅𝐵))
1716elab3g 2954 . . . . 5 ((𝐴𝑅𝐵𝐵 ∈ V) → (𝐵 ∈ {𝑥𝐴𝑅𝑥} ↔ 𝐴𝑅𝐵))
1815, 17syl 14 . . . 4 (Rel 𝑅 → (𝐵 ∈ {𝑥𝐴𝑅𝑥} ↔ 𝐴𝑅𝐵))
1913, 18sylan9bbr 463 . . 3 ((Rel 𝑅𝐴 ∈ V) → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵))
2019ex 115 . 2 (Rel 𝑅 → (𝐴 ∈ V → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵)))
219, 11, 20pm5.21ndd 710 1 (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wex 1538  wcel 2200  {cab 2215  wrex 2509  Vcvv 2799  {csn 3666   class class class wbr 4082  cima 4721  Rel wrel 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731
This theorem is referenced by:  eliniseg2  5107
  Copyright terms: Public domain W3C validator