| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrelimasn | GIF version | ||
| Description: Elementhood in the image of a singleton. (Contributed by Mario Carneiro, 3-Nov-2015.) |
| Ref | Expression |
|---|---|
| elrelimasn | ⊢ (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimag 5040 | . . . . . 6 ⊢ (𝐵 ∈ (𝑅 “ {𝐴}) → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ ∃𝑦 ∈ {𝐴}𝑦𝑅𝐵)) | |
| 2 | 1 | ibi 176 | . . . . 5 ⊢ (𝐵 ∈ (𝑅 “ {𝐴}) → ∃𝑦 ∈ {𝐴}𝑦𝑅𝐵) |
| 3 | rexm 3564 | . . . . 5 ⊢ (∃𝑦 ∈ {𝐴}𝑦𝑅𝐵 → ∃𝑦 𝑦 ∈ {𝐴}) | |
| 4 | elsni 3656 | . . . . . 6 ⊢ (𝑦 ∈ {𝐴} → 𝑦 = 𝐴) | |
| 5 | 4 | eximi 1624 | . . . . 5 ⊢ (∃𝑦 𝑦 ∈ {𝐴} → ∃𝑦 𝑦 = 𝐴) |
| 6 | 2, 3, 5 | 3syl 17 | . . . 4 ⊢ (𝐵 ∈ (𝑅 “ {𝐴}) → ∃𝑦 𝑦 = 𝐴) |
| 7 | isset 2780 | . . . 4 ⊢ (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴) | |
| 8 | 6, 7 | sylibr 134 | . . 3 ⊢ (𝐵 ∈ (𝑅 “ {𝐴}) → 𝐴 ∈ V) |
| 9 | 8 | a1i 9 | . 2 ⊢ (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) → 𝐴 ∈ V)) |
| 10 | brrelex1 4727 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
| 11 | 10 | ex 115 | . 2 ⊢ (Rel 𝑅 → (𝐴𝑅𝐵 → 𝐴 ∈ V)) |
| 12 | imasng 5061 | . . . . 5 ⊢ (𝐴 ∈ V → (𝑅 “ {𝐴}) = {𝑥 ∣ 𝐴𝑅𝑥}) | |
| 13 | 12 | eleq2d 2276 | . . . 4 ⊢ (𝐴 ∈ V → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐵 ∈ {𝑥 ∣ 𝐴𝑅𝑥})) |
| 14 | brrelex2 4729 | . . . . . 6 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) | |
| 15 | 14 | ex 115 | . . . . 5 ⊢ (Rel 𝑅 → (𝐴𝑅𝐵 → 𝐵 ∈ V)) |
| 16 | breq2 4058 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
| 17 | 16 | elab3g 2928 | . . . . 5 ⊢ ((𝐴𝑅𝐵 → 𝐵 ∈ V) → (𝐵 ∈ {𝑥 ∣ 𝐴𝑅𝑥} ↔ 𝐴𝑅𝐵)) |
| 18 | 15, 17 | syl 14 | . . . 4 ⊢ (Rel 𝑅 → (𝐵 ∈ {𝑥 ∣ 𝐴𝑅𝑥} ↔ 𝐴𝑅𝐵)) |
| 19 | 13, 18 | sylan9bbr 463 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ V) → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵)) |
| 20 | 19 | ex 115 | . 2 ⊢ (Rel 𝑅 → (𝐴 ∈ V → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵))) |
| 21 | 9, 11, 20 | pm5.21ndd 707 | 1 ⊢ (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∃wex 1516 ∈ wcel 2177 {cab 2192 ∃wrex 2486 Vcvv 2773 {csn 3638 class class class wbr 4054 “ cima 4691 Rel wrel 4693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4055 df-opab 4117 df-xp 4694 df-rel 4695 df-cnv 4696 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 |
| This theorem is referenced by: eliniseg2 5076 |
| Copyright terms: Public domain | W3C validator |