![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rabab | GIF version |
Description: A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
rabab | ⊢ {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2481 | . 2 ⊢ {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ 𝜑)} | |
2 | vex 2763 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | biantrur 303 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
4 | 3 | abbii 2309 | . 2 ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ 𝜑)} |
5 | 1, 4 | eqtr4i 2217 | 1 ⊢ {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2164 {cab 2179 {crab 2476 Vcvv 2760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-rab 2481 df-v 2762 |
This theorem is referenced by: notab 3429 intmin2 3896 euen1 6856 bj-omind 15426 |
Copyright terms: Public domain | W3C validator |