![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rabab | GIF version |
Description: A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
rabab | ⊢ {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2397 | . 2 ⊢ {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ 𝜑)} | |
2 | vex 2658 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | biantrur 299 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
4 | 3 | abbii 2228 | . 2 ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ 𝜑)} |
5 | 1, 4 | eqtr4i 2136 | 1 ⊢ {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1312 ∈ wcel 1461 {cab 2099 {crab 2392 Vcvv 2655 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-11 1465 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-rab 2397 df-v 2657 |
This theorem is referenced by: notab 3310 intmin2 3761 euen1 6648 bj-omind 12815 |
Copyright terms: Public domain | W3C validator |