| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mobii | GIF version | ||
| Description: Formula-building rule for "at most one" quantifier (inference form). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.) |
| Ref | Expression |
|---|---|
| mobii.1 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| mobii | ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mobii.1 | . . . 4 ⊢ (𝜓 ↔ 𝜒) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → (𝜓 ↔ 𝜒)) |
| 3 | 2 | mobidv 2091 | . 2 ⊢ (⊤ → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
| 4 | 3 | mptru 1382 | 1 ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ⊤wtru 1374 ∃*wmo 2056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-eu 2058 df-mo 2059 |
| This theorem is referenced by: moaneu 2131 moanmo 2132 2moswapdc 2145 2exeu 2147 rmobiia 2697 rmov 2794 euxfr2dc 2962 rmoan 2977 2rmorex 2983 mosn 3674 dffun9 5309 funopab 5315 funco 5320 funcnv2 5343 funcnv 5344 fun2cnv 5347 fncnv 5349 imadif 5363 fnres 5402 ovi3 6096 oprabex3 6227 axaddf 8001 axmulf 8002 frecuzrdgtcl 10579 frecuzrdgfunlem 10586 fsum3 11773 |
| Copyright terms: Public domain | W3C validator |