| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mobii | GIF version | ||
| Description: Formula-building rule for "at most one" quantifier (inference form). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.) |
| Ref | Expression |
|---|---|
| mobii.1 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| mobii | ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mobii.1 | . . . 4 ⊢ (𝜓 ↔ 𝜒) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → (𝜓 ↔ 𝜒)) |
| 3 | 2 | mobidv 2089 | . 2 ⊢ (⊤ → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
| 4 | 3 | mptru 1381 | 1 ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ⊤wtru 1373 ∃*wmo 2054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-eu 2056 df-mo 2057 |
| This theorem is referenced by: moaneu 2129 moanmo 2130 2moswapdc 2143 2exeu 2145 rmobiia 2695 rmov 2791 euxfr2dc 2957 rmoan 2972 2rmorex 2978 mosn 3668 dffun9 5297 funopab 5303 funco 5308 funcnv2 5328 funcnv 5329 fun2cnv 5332 fncnv 5334 imadif 5348 fnres 5386 ovi3 6073 oprabex3 6204 axaddf 7963 axmulf 7964 frecuzrdgtcl 10538 frecuzrdgfunlem 10545 fsum3 11617 |
| Copyright terms: Public domain | W3C validator |