| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mobii | GIF version | ||
| Description: Formula-building rule for "at most one" quantifier (inference form). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.) |
| Ref | Expression |
|---|---|
| mobii.1 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| mobii | ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mobii.1 | . . . 4 ⊢ (𝜓 ↔ 𝜒) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → (𝜓 ↔ 𝜒)) |
| 3 | 2 | mobidv 2089 | . 2 ⊢ (⊤ → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
| 4 | 3 | mptru 1381 | 1 ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ⊤wtru 1373 ∃*wmo 2054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-eu 2056 df-mo 2057 |
| This theorem is referenced by: moaneu 2129 moanmo 2130 2moswapdc 2143 2exeu 2145 rmobiia 2695 rmov 2791 euxfr2dc 2957 rmoan 2972 2rmorex 2978 mosn 3668 dffun9 5299 funopab 5305 funco 5310 funcnv2 5333 funcnv 5334 fun2cnv 5337 fncnv 5339 imadif 5353 fnres 5391 ovi3 6082 oprabex3 6213 axaddf 7980 axmulf 7981 frecuzrdgtcl 10555 frecuzrdgfunlem 10562 fsum3 11640 |
| Copyright terms: Public domain | W3C validator |