![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mobii | GIF version |
Description: Formula-building rule for "at most one" quantifier (inference form). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.) |
Ref | Expression |
---|---|
mobii.1 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
mobii | ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mobii.1 | . . . 4 ⊢ (𝜓 ↔ 𝜒) | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → (𝜓 ↔ 𝜒)) |
3 | 2 | mobidv 2078 | . 2 ⊢ (⊤ → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
4 | 3 | mptru 1373 | 1 ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ⊤wtru 1365 ∃*wmo 2043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-eu 2045 df-mo 2046 |
This theorem is referenced by: moaneu 2118 moanmo 2119 2moswapdc 2132 2exeu 2134 rmobiia 2684 rmov 2780 euxfr2dc 2946 rmoan 2961 2rmorex 2967 mosn 3655 dffun9 5284 funopab 5290 funco 5295 funcnv2 5315 funcnv 5316 fun2cnv 5319 fncnv 5321 imadif 5335 fnres 5371 ovi3 6057 oprabex3 6183 axaddf 7930 axmulf 7931 frecuzrdgtcl 10486 frecuzrdgfunlem 10493 fsum3 11533 |
Copyright terms: Public domain | W3C validator |