![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mobii | GIF version |
Description: Formula-building rule for "at most one" quantifier (inference form). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.) |
Ref | Expression |
---|---|
mobii.1 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
mobii | ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mobii.1 | . . . 4 ⊢ (𝜓 ↔ 𝜒) | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → (𝜓 ↔ 𝜒)) |
3 | 2 | mobidv 1984 | . 2 ⊢ (⊤ → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
4 | 3 | mptru 1298 | 1 ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 ⊤wtru 1290 ∃*wmo 1949 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-4 1445 ax-17 1464 ax-ial 1472 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-eu 1951 df-mo 1952 |
This theorem is referenced by: moaneu 2024 moanmo 2025 2moswapdc 2038 2exeu 2040 rmobiia 2556 rmov 2639 euxfr2dc 2800 rmoan 2815 2rmorex 2821 mosn 3479 dffun9 5044 funopab 5049 funco 5054 funcnv2 5074 funcnv 5075 fun2cnv 5078 fncnv 5080 imadif 5094 fnres 5130 ovi3 5781 oprabex3 5900 frecuzrdgtcl 9819 frecuzrdgfunlem 9826 fisum 10778 |
Copyright terms: Public domain | W3C validator |