Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mobii | GIF version |
Description: Formula-building rule for "at most one" quantifier (inference form). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.) |
Ref | Expression |
---|---|
mobii.1 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
mobii | ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mobii.1 | . . . 4 ⊢ (𝜓 ↔ 𝜒) | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → (𝜓 ↔ 𝜒)) |
3 | 2 | mobidv 2050 | . 2 ⊢ (⊤ → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
4 | 3 | mptru 1352 | 1 ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ⊤wtru 1344 ∃*wmo 2015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-eu 2017 df-mo 2018 |
This theorem is referenced by: moaneu 2090 moanmo 2091 2moswapdc 2104 2exeu 2106 rmobiia 2655 rmov 2746 euxfr2dc 2911 rmoan 2926 2rmorex 2932 mosn 3612 dffun9 5217 funopab 5223 funco 5228 funcnv2 5248 funcnv 5249 fun2cnv 5252 fncnv 5254 imadif 5268 fnres 5304 ovi3 5978 oprabex3 6097 axaddf 7809 axmulf 7810 frecuzrdgtcl 10347 frecuzrdgfunlem 10354 fsum3 11328 |
Copyright terms: Public domain | W3C validator |