ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mobii GIF version

Theorem mobii 2090
Description: Formula-building rule for "at most one" quantifier (inference form). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.)
Hypothesis
Ref Expression
mobii.1 (𝜓𝜒)
Assertion
Ref Expression
mobii (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)

Proof of Theorem mobii
StepHypRef Expression
1 mobii.1 . . . 4 (𝜓𝜒)
21a1i 9 . . 3 (⊤ → (𝜓𝜒))
32mobidv 2089 . 2 (⊤ → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))
43mptru 1381 1 (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)
Colors of variables: wff set class
Syntax hints:  wb 105  wtru 1373  ∃*wmo 2054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-eu 2056  df-mo 2057
This theorem is referenced by:  moaneu  2129  moanmo  2130  2moswapdc  2143  2exeu  2145  rmobiia  2695  rmov  2791  euxfr2dc  2957  rmoan  2972  2rmorex  2978  mosn  3668  dffun9  5297  funopab  5303  funco  5308  funcnv2  5328  funcnv  5329  fun2cnv  5332  fncnv  5334  imadif  5348  fnres  5386  ovi3  6073  oprabex3  6204  axaddf  7963  axmulf  7964  frecuzrdgtcl  10538  frecuzrdgfunlem  10545  fsum3  11617
  Copyright terms: Public domain W3C validator