Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mobii | GIF version |
Description: Formula-building rule for "at most one" quantifier (inference form). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.) |
Ref | Expression |
---|---|
mobii.1 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
mobii | ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mobii.1 | . . . 4 ⊢ (𝜓 ↔ 𝜒) | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → (𝜓 ↔ 𝜒)) |
3 | 2 | mobidv 2055 | . 2 ⊢ (⊤ → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
4 | 3 | mptru 1357 | 1 ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ⊤wtru 1349 ∃*wmo 2020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-eu 2022 df-mo 2023 |
This theorem is referenced by: moaneu 2095 moanmo 2096 2moswapdc 2109 2exeu 2111 rmobiia 2659 rmov 2750 euxfr2dc 2915 rmoan 2930 2rmorex 2936 mosn 3619 dffun9 5227 funopab 5233 funco 5238 funcnv2 5258 funcnv 5259 fun2cnv 5262 fncnv 5264 imadif 5278 fnres 5314 ovi3 5989 oprabex3 6108 axaddf 7830 axmulf 7831 frecuzrdgtcl 10368 frecuzrdgfunlem 10375 fsum3 11350 |
Copyright terms: Public domain | W3C validator |