![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mobii | GIF version |
Description: Formula-building rule for "at most one" quantifier (inference form). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.) |
Ref | Expression |
---|---|
mobii.1 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
mobii | ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mobii.1 | . . . 4 ⊢ (𝜓 ↔ 𝜒) | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → (𝜓 ↔ 𝜒)) |
3 | 2 | mobidv 2078 | . 2 ⊢ (⊤ → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
4 | 3 | mptru 1373 | 1 ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ⊤wtru 1365 ∃*wmo 2043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-eu 2045 df-mo 2046 |
This theorem is referenced by: moaneu 2118 moanmo 2119 2moswapdc 2132 2exeu 2134 rmobiia 2684 rmov 2780 euxfr2dc 2945 rmoan 2960 2rmorex 2966 mosn 3654 dffun9 5283 funopab 5289 funco 5294 funcnv2 5314 funcnv 5315 fun2cnv 5318 fncnv 5320 imadif 5334 fnres 5370 ovi3 6055 oprabex3 6181 axaddf 7928 axmulf 7929 frecuzrdgtcl 10483 frecuzrdgfunlem 10490 fsum3 11530 |
Copyright terms: Public domain | W3C validator |