| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mobii | GIF version | ||
| Description: Formula-building rule for "at most one" quantifier (inference form). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.) |
| Ref | Expression |
|---|---|
| mobii.1 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| mobii | ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mobii.1 | . . . 4 ⊢ (𝜓 ↔ 𝜒) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → (𝜓 ↔ 𝜒)) |
| 3 | 2 | mobidv 2113 | . 2 ⊢ (⊤ → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
| 4 | 3 | mptru 1404 | 1 ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ⊤wtru 1396 ∃*wmo 2078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-eu 2080 df-mo 2081 |
| This theorem is referenced by: moaneu 2154 moanmo 2155 2moswapdc 2168 2exeu 2170 rmobiia 2722 rmov 2820 euxfr2dc 2988 rmoan 3003 2rmorex 3009 mosn 3702 dffun9 5346 funopab 5352 funco 5357 funcnv2 5380 funcnv 5381 fun2cnv 5384 fncnv 5386 imadif 5400 fnres 5439 ovi3 6141 oprabex3 6272 axaddf 8051 axmulf 8052 frecuzrdgtcl 10629 frecuzrdgfunlem 10636 fsum3 11893 |
| Copyright terms: Public domain | W3C validator |