ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb8mo GIF version

Theorem sb8mo 2067
Description: Variable substitution for "at most one". (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Hypothesis
Ref Expression
sb8eu.1 𝑦𝜑
Assertion
Ref Expression
sb8mo (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑)

Proof of Theorem sb8mo
StepHypRef Expression
1 sb8eu.1 . . . 4 𝑦𝜑
21sb8e 1879 . . 3 (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
31sb8eu 2066 . . 3 (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)
42, 3imbi12i 239 . 2 ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (∃𝑦[𝑦 / 𝑥]𝜑 → ∃!𝑦[𝑦 / 𝑥]𝜑))
5 df-mo 2057 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
6 df-mo 2057 . 2 (∃*𝑦[𝑦 / 𝑥]𝜑 ↔ (∃𝑦[𝑦 / 𝑥]𝜑 → ∃!𝑦[𝑦 / 𝑥]𝜑))
74, 5, 63bitr4i 212 1 (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wnf 1482  wex 1514  [wsb 1784  ∃!weu 2053  ∃*wmo 2054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator