Step | Hyp | Ref
| Expression |
1 | | nfv 1505 |
. . . . 5
⊢
Ⅎ𝑤(𝜑 ↔ 𝑥 = 𝑧) |
2 | 1 | sb8 1833 |
. . . 4
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑤[𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧)) |
3 | | sbbi 1936 |
. . . . . 6
⊢ ([𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ([𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝑥 = 𝑧)) |
4 | | sb8eu.1 |
. . . . . . . 8
⊢
Ⅎ𝑦𝜑 |
5 | 4 | nfsb 1923 |
. . . . . . 7
⊢
Ⅎ𝑦[𝑤 / 𝑥]𝜑 |
6 | | equsb3 1928 |
. . . . . . . 8
⊢ ([𝑤 / 𝑥]𝑥 = 𝑧 ↔ 𝑤 = 𝑧) |
7 | | nfv 1505 |
. . . . . . . 8
⊢
Ⅎ𝑦 𝑤 = 𝑧 |
8 | 6, 7 | nfxfr 1451 |
. . . . . . 7
⊢
Ⅎ𝑦[𝑤 / 𝑥]𝑥 = 𝑧 |
9 | 5, 8 | nfbi 1566 |
. . . . . 6
⊢
Ⅎ𝑦([𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝑥 = 𝑧) |
10 | 3, 9 | nfxfr 1451 |
. . . . 5
⊢
Ⅎ𝑦[𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) |
11 | | nfv 1505 |
. . . . 5
⊢
Ⅎ𝑤[𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) |
12 | | sbequ 1817 |
. . . . 5
⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ [𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧))) |
13 | 10, 11, 12 | cbval 1731 |
. . . 4
⊢
(∀𝑤[𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑦[𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧)) |
14 | | equsb3 1928 |
. . . . . 6
⊢ ([𝑦 / 𝑥]𝑥 = 𝑧 ↔ 𝑦 = 𝑧) |
15 | 14 | sblbis 1937 |
. . . . 5
⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) |
16 | 15 | albii 1447 |
. . . 4
⊢
(∀𝑦[𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) |
17 | 2, 13, 16 | 3bitri 205 |
. . 3
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) |
18 | 17 | exbii 1582 |
. 2
⊢
(∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∃𝑧∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) |
19 | | df-eu 2006 |
. 2
⊢
(∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) |
20 | | df-eu 2006 |
. 2
⊢
(∃!𝑦[𝑦 / 𝑥]𝜑 ↔ ∃𝑧∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) |
21 | 18, 19, 20 | 3bitr4i 211 |
1
⊢
(∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑) |