| Step | Hyp | Ref
 | Expression | 
| 1 |   | nfv 1542 | 
. . . . 5
⊢
Ⅎ𝑤(𝜑 ↔ 𝑥 = 𝑧) | 
| 2 | 1 | sb8 1870 | 
. . . 4
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑤[𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧)) | 
| 3 |   | sbbi 1978 | 
. . . . . 6
⊢ ([𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ([𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝑥 = 𝑧)) | 
| 4 |   | sb8eu.1 | 
. . . . . . . 8
⊢
Ⅎ𝑦𝜑 | 
| 5 | 4 | nfsb 1965 | 
. . . . . . 7
⊢
Ⅎ𝑦[𝑤 / 𝑥]𝜑 | 
| 6 |   | equsb3 1970 | 
. . . . . . . 8
⊢ ([𝑤 / 𝑥]𝑥 = 𝑧 ↔ 𝑤 = 𝑧) | 
| 7 |   | nfv 1542 | 
. . . . . . . 8
⊢
Ⅎ𝑦 𝑤 = 𝑧 | 
| 8 | 6, 7 | nfxfr 1488 | 
. . . . . . 7
⊢
Ⅎ𝑦[𝑤 / 𝑥]𝑥 = 𝑧 | 
| 9 | 5, 8 | nfbi 1603 | 
. . . . . 6
⊢
Ⅎ𝑦([𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝑥 = 𝑧) | 
| 10 | 3, 9 | nfxfr 1488 | 
. . . . 5
⊢
Ⅎ𝑦[𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) | 
| 11 |   | nfv 1542 | 
. . . . 5
⊢
Ⅎ𝑤[𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) | 
| 12 |   | sbequ 1854 | 
. . . . 5
⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ [𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧))) | 
| 13 | 10, 11, 12 | cbval 1768 | 
. . . 4
⊢
(∀𝑤[𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑦[𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧)) | 
| 14 |   | equsb3 1970 | 
. . . . . 6
⊢ ([𝑦 / 𝑥]𝑥 = 𝑧 ↔ 𝑦 = 𝑧) | 
| 15 | 14 | sblbis 1979 | 
. . . . 5
⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) | 
| 16 | 15 | albii 1484 | 
. . . 4
⊢
(∀𝑦[𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) | 
| 17 | 2, 13, 16 | 3bitri 206 | 
. . 3
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) | 
| 18 | 17 | exbii 1619 | 
. 2
⊢
(∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∃𝑧∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) | 
| 19 |   | df-eu 2048 | 
. 2
⊢
(∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | 
| 20 |   | df-eu 2048 | 
. 2
⊢
(∃!𝑦[𝑦 / 𝑥]𝜑 ↔ ∃𝑧∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) | 
| 21 | 18, 19, 20 | 3bitr4i 212 | 
1
⊢
(∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑) |