ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbceqg GIF version

Theorem sbceqg 3117
Description: Distribute proper substitution through an equality relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
sbceqg (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))

Proof of Theorem sbceqg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3008 . . 3 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝐵 = 𝐶[𝐴 / 𝑥]𝐵 = 𝐶))
2 dfsbcq2 3008 . . . . 5 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐵))
32abbidv 2325 . . . 4 (𝑧 = 𝐴 → {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐵})
4 dfsbcq2 3008 . . . . 5 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐶))
54abbidv 2325 . . . 4 (𝑧 = 𝐴 → {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶} = {𝑦[𝐴 / 𝑥]𝑦𝐶})
63, 5eqeq12d 2222 . . 3 (𝑧 = 𝐴 → ({𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶} ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐶}))
7 nfs1v 1968 . . . . . 6 𝑥[𝑧 / 𝑥]𝑦𝐵
87nfab 2355 . . . . 5 𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵}
9 nfs1v 1968 . . . . . 6 𝑥[𝑧 / 𝑥]𝑦𝐶
109nfab 2355 . . . . 5 𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶}
118, 10nfeq 2358 . . . 4 𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶}
12 sbab 2335 . . . . 5 (𝑥 = 𝑧𝐵 = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵})
13 sbab 2335 . . . . 5 (𝑥 = 𝑧𝐶 = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶})
1412, 13eqeq12d 2222 . . . 4 (𝑥 = 𝑧 → (𝐵 = 𝐶 ↔ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶}))
1511, 14sbie 1815 . . 3 ([𝑧 / 𝑥]𝐵 = 𝐶 ↔ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶})
161, 6, 15vtoclbg 2839 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐶}))
17 df-csb 3102 . . 3 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
18 df-csb 3102 . . 3 𝐴 / 𝑥𝐶 = {𝑦[𝐴 / 𝑥]𝑦𝐶}
1917, 18eqeq12i 2221 . 2 (𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶 ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐶})
2016, 19bitr4di 198 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  [wsb 1786  wcel 2178  {cab 2193  [wsbc 3005  csb 3101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-sbc 3006  df-csb 3102
This theorem is referenced by:  sbcne12g  3119  sbceq1g  3121  sbceq2g  3123  sbcfng  5443  swrdspsleq  11158  fprodmodd  12067
  Copyright terms: Public domain W3C validator