ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abbi2dv GIF version

Theorem abbi2dv 2315
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.)
Hypothesis
Ref Expression
abbirdv.1 (𝜑 → (𝑥𝐴𝜓))
Assertion
Ref Expression
abbi2dv (𝜑𝐴 = {𝑥𝜓})
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem abbi2dv
StepHypRef Expression
1 abbirdv.1 . . 3 (𝜑 → (𝑥𝐴𝜓))
21alrimiv 1888 . 2 (𝜑 → ∀𝑥(𝑥𝐴𝜓))
3 abeq2 2305 . 2 (𝐴 = {𝑥𝜓} ↔ ∀𝑥(𝑥𝐴𝜓))
42, 3sylibr 134 1 (𝜑𝐴 = {𝑥𝜓})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362   = wceq 1364  wcel 2167  {cab 2182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192
This theorem is referenced by:  sbab  2324  iftrue  3566  iffalse  3569  iniseg  5041  fncnvima2  5683  isoini  5865  dftpos3  6320  unfiexmid  6979  tgval3  14294  txrest  14512  cnblcld  14771
  Copyright terms: Public domain W3C validator