![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abbi2dv | GIF version |
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) |
Ref | Expression |
---|---|
abbirdv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
Ref | Expression |
---|---|
abbi2dv | ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbirdv.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) | |
2 | 1 | alrimiv 1813 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜓)) |
3 | abeq2 2208 | . 2 ⊢ (𝐴 = {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜓)) | |
4 | 2, 3 | sylibr 133 | 1 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1297 = wceq 1299 ∈ wcel 1448 {cab 2086 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-11 1452 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 |
This theorem is referenced by: sbab 2226 iftrue 3426 iffalse 3429 iniseg 4847 fncnvima2 5473 isoini 5651 dftpos3 6089 unfiexmid 6735 tgval3 12009 txrest 12226 cnblcld 12457 |
Copyright terms: Public domain | W3C validator |