ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abbi2dv GIF version

Theorem abbi2dv 2348
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.)
Hypothesis
Ref Expression
abbirdv.1 (𝜑 → (𝑥𝐴𝜓))
Assertion
Ref Expression
abbi2dv (𝜑𝐴 = {𝑥𝜓})
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem abbi2dv
StepHypRef Expression
1 abbirdv.1 . . 3 (𝜑 → (𝑥𝐴𝜓))
21alrimiv 1920 . 2 (𝜑 → ∀𝑥(𝑥𝐴𝜓))
3 abeq2 2338 . 2 (𝐴 = {𝑥𝜓} ↔ ∀𝑥(𝑥𝐴𝜓))
42, 3sylibr 134 1 (𝜑𝐴 = {𝑥𝜓})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1393   = wceq 1395  wcel 2200  {cab 2215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225
This theorem is referenced by:  sbab  2357  iftrue  3607  iffalse  3610  iniseg  5099  fncnvima2  5755  isoini  5941  dftpos3  6406  unfiexmid  7076  tgval3  14726  txrest  14944  cnblcld  15203
  Copyright terms: Public domain W3C validator