| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abbi2dv | GIF version | ||
| Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) |
| Ref | Expression |
|---|---|
| abbirdv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| abbi2dv | ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbirdv.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) | |
| 2 | 1 | alrimiv 1896 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜓)) |
| 3 | abeq2 2313 | . 2 ⊢ (𝐴 = {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜓)) | |
| 4 | 2, 3 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1370 = wceq 1372 ∈ wcel 2175 {cab 2190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 |
| This theorem is referenced by: sbab 2332 iftrue 3575 iffalse 3578 iniseg 5051 fncnvima2 5695 isoini 5877 dftpos3 6338 unfiexmid 6997 tgval3 14448 txrest 14666 cnblcld 14925 |
| Copyright terms: Public domain | W3C validator |