Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbeq2 | GIF version |
Description: Substituting into equivalent classes gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.) |
Ref | Expression |
---|---|
csbeq2 | ⊢ (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2230 | . . . . 5 ⊢ (𝐵 = 𝐶 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) | |
2 | 1 | alimi 1443 | . . . 4 ⊢ (∀𝑥 𝐵 = 𝐶 → ∀𝑥(𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
3 | sbcbi2 3001 | . . . 4 ⊢ (∀𝑥(𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶) → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) | |
4 | 2, 3 | syl 14 | . . 3 ⊢ (∀𝑥 𝐵 = 𝐶 → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) |
5 | 4 | abbidv 2284 | . 2 ⊢ (∀𝑥 𝐵 = 𝐶 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶}) |
6 | df-csb 3046 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
7 | df-csb 3046 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} | |
8 | 5, 6, 7 | 3eqtr4g 2224 | 1 ⊢ (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1341 = wceq 1343 ∈ wcel 2136 {cab 2151 [wsbc 2951 ⦋csb 3045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-sbc 2952 df-csb 3046 |
This theorem is referenced by: prodeq2w 11497 |
Copyright terms: Public domain | W3C validator |