ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbeq2 GIF version

Theorem csbeq2 3083
Description: Substituting into equivalent classes gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.)
Assertion
Ref Expression
csbeq2 (∀𝑥 𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)

Proof of Theorem csbeq2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2241 . . . . 5 (𝐵 = 𝐶 → (𝑦𝐵𝑦𝐶))
21alimi 1455 . . . 4 (∀𝑥 𝐵 = 𝐶 → ∀𝑥(𝑦𝐵𝑦𝐶))
3 sbcbi2 3015 . . . 4 (∀𝑥(𝑦𝐵𝑦𝐶) → ([𝐴 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐶))
42, 3syl 14 . . 3 (∀𝑥 𝐵 = 𝐶 → ([𝐴 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐶))
54abbidv 2295 . 2 (∀𝑥 𝐵 = 𝐶 → {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐶})
6 df-csb 3060 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
7 df-csb 3060 . 2 𝐴 / 𝑥𝐶 = {𝑦[𝐴 / 𝑥]𝑦𝐶}
85, 6, 73eqtr4g 2235 1 (∀𝑥 𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1351   = wceq 1353  wcel 2148  {cab 2163  [wsbc 2964  csb 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-sbc 2965  df-csb 3060
This theorem is referenced by:  prodeq2w  11566
  Copyright terms: Public domain W3C validator