ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcom2v2 GIF version

Theorem sbcom2v2 1998
Description: Lemma for proving sbcom2 1999. It is the same as sbcom2v 1997 but removes the distinct variable constraint on 𝑥 and 𝑦. (Contributed by Jim Kingdon, 19-Feb-2018.)
Assertion
Ref Expression
sbcom2v2 ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)
Distinct variable groups:   𝑥,𝑤,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem sbcom2v2
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 sbcom2v 1997 . . 3 ([𝑤 / 𝑧][𝑦 / 𝑣][𝑣 / 𝑥]𝜑 ↔ [𝑦 / 𝑣][𝑤 / 𝑧][𝑣 / 𝑥]𝜑)
2 sbcom2v 1997 . . . 4 ([𝑤 / 𝑧][𝑣 / 𝑥]𝜑 ↔ [𝑣 / 𝑥][𝑤 / 𝑧]𝜑)
32sbbii 1776 . . 3 ([𝑦 / 𝑣][𝑤 / 𝑧][𝑣 / 𝑥]𝜑 ↔ [𝑦 / 𝑣][𝑣 / 𝑥][𝑤 / 𝑧]𝜑)
41, 3bitri 184 . 2 ([𝑤 / 𝑧][𝑦 / 𝑣][𝑣 / 𝑥]𝜑 ↔ [𝑦 / 𝑣][𝑣 / 𝑥][𝑤 / 𝑧]𝜑)
5 ax-17 1537 . . . 4 (𝜑 → ∀𝑣𝜑)
65sbco2vh 1957 . . 3 ([𝑦 / 𝑣][𝑣 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
76sbbii 1776 . 2 ([𝑤 / 𝑧][𝑦 / 𝑣][𝑣 / 𝑥]𝜑 ↔ [𝑤 / 𝑧][𝑦 / 𝑥]𝜑)
8 ax-17 1537 . . 3 ([𝑤 / 𝑧]𝜑 → ∀𝑣[𝑤 / 𝑧]𝜑)
98sbco2vh 1957 . 2 ([𝑦 / 𝑣][𝑣 / 𝑥][𝑤 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)
104, 7, 93bitr3i 210 1 ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  [wsb 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774
This theorem is referenced by:  sbcom2  1999
  Copyright terms: Public domain W3C validator