Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcom2v2 | GIF version |
Description: Lemma for proving sbcom2 1975. It is the same as sbcom2v 1973 but removes the distinct variable constraint on 𝑥 and 𝑦. (Contributed by Jim Kingdon, 19-Feb-2018.) |
Ref | Expression |
---|---|
sbcom2v2 | ⊢ ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcom2v 1973 | . . 3 ⊢ ([𝑤 / 𝑧][𝑦 / 𝑣][𝑣 / 𝑥]𝜑 ↔ [𝑦 / 𝑣][𝑤 / 𝑧][𝑣 / 𝑥]𝜑) | |
2 | sbcom2v 1973 | . . . 4 ⊢ ([𝑤 / 𝑧][𝑣 / 𝑥]𝜑 ↔ [𝑣 / 𝑥][𝑤 / 𝑧]𝜑) | |
3 | 2 | sbbii 1753 | . . 3 ⊢ ([𝑦 / 𝑣][𝑤 / 𝑧][𝑣 / 𝑥]𝜑 ↔ [𝑦 / 𝑣][𝑣 / 𝑥][𝑤 / 𝑧]𝜑) |
4 | 1, 3 | bitri 183 | . 2 ⊢ ([𝑤 / 𝑧][𝑦 / 𝑣][𝑣 / 𝑥]𝜑 ↔ [𝑦 / 𝑣][𝑣 / 𝑥][𝑤 / 𝑧]𝜑) |
5 | ax-17 1514 | . . . 4 ⊢ (𝜑 → ∀𝑣𝜑) | |
6 | 5 | sbco2vh 1933 | . . 3 ⊢ ([𝑦 / 𝑣][𝑣 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
7 | 6 | sbbii 1753 | . 2 ⊢ ([𝑤 / 𝑧][𝑦 / 𝑣][𝑣 / 𝑥]𝜑 ↔ [𝑤 / 𝑧][𝑦 / 𝑥]𝜑) |
8 | ax-17 1514 | . . 3 ⊢ ([𝑤 / 𝑧]𝜑 → ∀𝑣[𝑤 / 𝑧]𝜑) | |
9 | 8 | sbco2vh 1933 | . 2 ⊢ ([𝑦 / 𝑣][𝑣 / 𝑥][𝑤 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) |
10 | 4, 7, 9 | 3bitr3i 209 | 1 ⊢ ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 [wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 |
This theorem is referenced by: sbcom2 1975 |
Copyright terms: Public domain | W3C validator |