ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2vh GIF version

Theorem sbco2vh 1957
Description: This is a version of sbco2 1977 where 𝑧 is distinct from 𝑥. (Contributed by Jim Kingdon, 12-Feb-2018.)
Hypothesis
Ref Expression
sbco2vh.1 (𝜑 → ∀𝑧𝜑)
Assertion
Ref Expression
sbco2vh ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sbco2vh
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sbco2vh.1 . . . 4 (𝜑 → ∀𝑧𝜑)
21sbco2vlem 1956 . . 3 ([𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝜑)
32sbbii 1776 . 2 ([𝑦 / 𝑤][𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑤][𝑤 / 𝑥]𝜑)
4 ax-17 1537 . . 3 ([𝑧 / 𝑥]𝜑 → ∀𝑤[𝑧 / 𝑥]𝜑)
54sbco2vlem 1956 . 2 ([𝑦 / 𝑤][𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑)
6 ax-17 1537 . . 3 (𝜑 → ∀𝑤𝜑)
76sbco2vlem 1956 . 2 ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
83, 5, 73bitr3i 210 1 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362  [wsb 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774
This theorem is referenced by:  nfsb  1958  equsb3  1963  sbn  1964  sbim  1965  sbor  1966  sban  1967  sbco2vd  1979  sbco3v  1981  sbcom2v2  1998  sbcom2  1999  dfsb7  2003  sb7f  2004  sbal  2012  sbal1  2014  sbex  2016
  Copyright terms: Public domain W3C validator