ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2vh GIF version

Theorem sbco2vh 1972
Description: This is a version of sbco2 1992 where 𝑧 is distinct from 𝑥. (Contributed by Jim Kingdon, 12-Feb-2018.)
Hypothesis
Ref Expression
sbco2vh.1 (𝜑 → ∀𝑧𝜑)
Assertion
Ref Expression
sbco2vh ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sbco2vh
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sbco2vh.1 . . . 4 (𝜑 → ∀𝑧𝜑)
21sbco2vlem 1971 . . 3 ([𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝜑)
32sbbii 1787 . 2 ([𝑦 / 𝑤][𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑤][𝑤 / 𝑥]𝜑)
4 ax-17 1548 . . 3 ([𝑧 / 𝑥]𝜑 → ∀𝑤[𝑧 / 𝑥]𝜑)
54sbco2vlem 1971 . 2 ([𝑦 / 𝑤][𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑)
6 ax-17 1548 . . 3 (𝜑 → ∀𝑤𝜑)
76sbco2vlem 1971 . 2 ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
83, 5, 73bitr3i 210 1 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1370  [wsb 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785
This theorem is referenced by:  nfsb  1973  equsb3  1978  sbn  1979  sbim  1980  sbor  1981  sban  1982  sbco2vd  1994  sbco3v  1996  sbcom2v2  2013  sbcom2  2014  dfsb7  2018  sb7f  2019  sbal  2027  sbal1  2029  sbex  2031
  Copyright terms: Public domain W3C validator