ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2vh GIF version

Theorem sbco2vh 1974
Description: This is a version of sbco2 1994 where 𝑧 is distinct from 𝑥. (Contributed by Jim Kingdon, 12-Feb-2018.)
Hypothesis
Ref Expression
sbco2vh.1 (𝜑 → ∀𝑧𝜑)
Assertion
Ref Expression
sbco2vh ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sbco2vh
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sbco2vh.1 . . . 4 (𝜑 → ∀𝑧𝜑)
21sbco2vlem 1973 . . 3 ([𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝜑)
32sbbii 1789 . 2 ([𝑦 / 𝑤][𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑤][𝑤 / 𝑥]𝜑)
4 ax-17 1550 . . 3 ([𝑧 / 𝑥]𝜑 → ∀𝑤[𝑧 / 𝑥]𝜑)
54sbco2vlem 1973 . 2 ([𝑦 / 𝑤][𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑)
6 ax-17 1550 . . 3 (𝜑 → ∀𝑤𝜑)
76sbco2vlem 1973 . 2 ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
83, 5, 73bitr3i 210 1 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1371  [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787
This theorem is referenced by:  nfsb  1975  equsb3  1980  sbn  1981  sbim  1982  sbor  1983  sban  1984  sbco2vd  1996  sbco3v  1998  sbcom2v2  2015  sbcom2  2016  dfsb7  2020  sb7f  2021  sbal  2029  sbal1  2031  sbex  2033
  Copyright terms: Public domain W3C validator