ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2vh GIF version

Theorem sbco2vh 1996
Description: This is a version of sbco2 2016 where 𝑧 is distinct from 𝑥. (Contributed by Jim Kingdon, 12-Feb-2018.)
Hypothesis
Ref Expression
sbco2vh.1 (𝜑 → ∀𝑧𝜑)
Assertion
Ref Expression
sbco2vh ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sbco2vh
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sbco2vh.1 . . . 4 (𝜑 → ∀𝑧𝜑)
21sbco2vlem 1995 . . 3 ([𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝜑)
32sbbii 1811 . 2 ([𝑦 / 𝑤][𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑤][𝑤 / 𝑥]𝜑)
4 ax-17 1572 . . 3 ([𝑧 / 𝑥]𝜑 → ∀𝑤[𝑧 / 𝑥]𝜑)
54sbco2vlem 1995 . 2 ([𝑦 / 𝑤][𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑)
6 ax-17 1572 . . 3 (𝜑 → ∀𝑤𝜑)
76sbco2vlem 1995 . 2 ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
83, 5, 73bitr3i 210 1 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1393  [wsb 1808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809
This theorem is referenced by:  nfsb  1997  equsb3  2002  sbn  2003  sbim  2004  sbor  2005  sban  2006  sbco2vd  2018  sbco3v  2020  sbcom2v2  2037  sbcom2  2038  dfsb7  2042  sb7f  2043  sbal  2051  sbal1  2053  sbex  2055
  Copyright terms: Public domain W3C validator