| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbco2vh | GIF version | ||
| Description: This is a version of sbco2 2016 where 𝑧 is distinct from 𝑥. (Contributed by Jim Kingdon, 12-Feb-2018.) |
| Ref | Expression |
|---|---|
| sbco2vh.1 | ⊢ (𝜑 → ∀𝑧𝜑) |
| Ref | Expression |
|---|---|
| sbco2vh | ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbco2vh.1 | . . . 4 ⊢ (𝜑 → ∀𝑧𝜑) | |
| 2 | 1 | sbco2vlem 1995 | . . 3 ⊢ ([𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝜑) |
| 3 | 2 | sbbii 1811 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑤][𝑤 / 𝑥]𝜑) |
| 4 | ax-17 1572 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 → ∀𝑤[𝑧 / 𝑥]𝜑) | |
| 5 | 4 | sbco2vlem 1995 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑) |
| 6 | ax-17 1572 | . . 3 ⊢ (𝜑 → ∀𝑤𝜑) | |
| 7 | 6 | sbco2vlem 1995 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| 8 | 3, 5, 7 | 3bitr3i 210 | 1 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1393 [wsb 1808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 |
| This theorem is referenced by: nfsb 1997 equsb3 2002 sbn 2003 sbim 2004 sbor 2005 sban 2006 sbco2vd 2018 sbco3v 2020 sbcom2v2 2037 sbcom2 2038 dfsb7 2042 sb7f 2043 sbal 2051 sbal1 2053 sbex 2055 |
| Copyright terms: Public domain | W3C validator |