Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbco2vh | GIF version |
Description: This is a version of sbco2 1958 where 𝑧 is distinct from 𝑥. (Contributed by Jim Kingdon, 12-Feb-2018.) |
Ref | Expression |
---|---|
sbco2vh.1 | ⊢ (𝜑 → ∀𝑧𝜑) |
Ref | Expression |
---|---|
sbco2vh | ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbco2vh.1 | . . . 4 ⊢ (𝜑 → ∀𝑧𝜑) | |
2 | 1 | sbco2vlem 1937 | . . 3 ⊢ ([𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝜑) |
3 | 2 | sbbii 1758 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑤][𝑤 / 𝑥]𝜑) |
4 | ax-17 1519 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 → ∀𝑤[𝑧 / 𝑥]𝜑) | |
5 | 4 | sbco2vlem 1937 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑) |
6 | ax-17 1519 | . . 3 ⊢ (𝜑 → ∀𝑤𝜑) | |
7 | 6 | sbco2vlem 1937 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
8 | 3, 5, 7 | 3bitr3i 209 | 1 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1346 [wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: nfsb 1939 equsb3 1944 sbn 1945 sbim 1946 sbor 1947 sban 1948 sbco2vd 1960 sbco3v 1962 sbcom2v2 1979 sbcom2 1980 dfsb7 1984 sb7f 1985 sbal 1993 sbal1 1995 sbex 1997 |
Copyright terms: Public domain | W3C validator |