| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbco2vh | GIF version | ||
| Description: This is a version of sbco2 1994 where 𝑧 is distinct from 𝑥. (Contributed by Jim Kingdon, 12-Feb-2018.) |
| Ref | Expression |
|---|---|
| sbco2vh.1 | ⊢ (𝜑 → ∀𝑧𝜑) |
| Ref | Expression |
|---|---|
| sbco2vh | ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbco2vh.1 | . . . 4 ⊢ (𝜑 → ∀𝑧𝜑) | |
| 2 | 1 | sbco2vlem 1973 | . . 3 ⊢ ([𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝜑) |
| 3 | 2 | sbbii 1789 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑤][𝑤 / 𝑥]𝜑) |
| 4 | ax-17 1550 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 → ∀𝑤[𝑧 / 𝑥]𝜑) | |
| 5 | 4 | sbco2vlem 1973 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑) |
| 6 | ax-17 1550 | . . 3 ⊢ (𝜑 → ∀𝑤𝜑) | |
| 7 | 6 | sbco2vlem 1973 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| 8 | 3, 5, 7 | 3bitr3i 210 | 1 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 [wsb 1786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 |
| This theorem is referenced by: nfsb 1975 equsb3 1980 sbn 1981 sbim 1982 sbor 1983 sban 1984 sbco2vd 1996 sbco3v 1998 sbcom2v2 2015 sbcom2 2016 dfsb7 2020 sb7f 2021 sbal 2029 sbal1 2031 sbex 2033 |
| Copyright terms: Public domain | W3C validator |