Proof of Theorem sbcom2v
| Step | Hyp | Ref
 | Expression | 
| 1 |   | alcom 1492 | 
. . 3
⊢
(∀𝑧∀𝑥(𝑥 = 𝑦 → (𝑧 = 𝑤 → 𝜑)) ↔ ∀𝑥∀𝑧(𝑥 = 𝑦 → (𝑧 = 𝑤 → 𝜑))) | 
| 2 |   | bi2.04 248 | 
. . . . . 6
⊢ ((𝑥 = 𝑦 → (𝑧 = 𝑤 → 𝜑)) ↔ (𝑧 = 𝑤 → (𝑥 = 𝑦 → 𝜑))) | 
| 3 | 2 | albii 1484 | 
. . . . 5
⊢
(∀𝑥(𝑥 = 𝑦 → (𝑧 = 𝑤 → 𝜑)) ↔ ∀𝑥(𝑧 = 𝑤 → (𝑥 = 𝑦 → 𝜑))) | 
| 4 |   | 19.21v 1887 | 
. . . . 5
⊢
(∀𝑥(𝑧 = 𝑤 → (𝑥 = 𝑦 → 𝜑)) ↔ (𝑧 = 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| 5 | 3, 4 | bitri 184 | 
. . . 4
⊢
(∀𝑥(𝑥 = 𝑦 → (𝑧 = 𝑤 → 𝜑)) ↔ (𝑧 = 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| 6 | 5 | albii 1484 | 
. . 3
⊢
(∀𝑧∀𝑥(𝑥 = 𝑦 → (𝑧 = 𝑤 → 𝜑)) ↔ ∀𝑧(𝑧 = 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| 7 |   | 19.21v 1887 | 
. . . 4
⊢
(∀𝑧(𝑥 = 𝑦 → (𝑧 = 𝑤 → 𝜑)) ↔ (𝑥 = 𝑦 → ∀𝑧(𝑧 = 𝑤 → 𝜑))) | 
| 8 | 7 | albii 1484 | 
. . 3
⊢
(∀𝑥∀𝑧(𝑥 = 𝑦 → (𝑧 = 𝑤 → 𝜑)) ↔ ∀𝑥(𝑥 = 𝑦 → ∀𝑧(𝑧 = 𝑤 → 𝜑))) | 
| 9 | 1, 6, 8 | 3bitr3i 210 | 
. 2
⊢
(∀𝑧(𝑧 = 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑥(𝑥 = 𝑦 → ∀𝑧(𝑧 = 𝑤 → 𝜑))) | 
| 10 |   | sb6 1901 | 
. . 3
⊢ ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑤 → [𝑦 / 𝑥]𝜑)) | 
| 11 |   | sb6 1901 | 
. . . . 5
⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | 
| 12 | 11 | imbi2i 226 | 
. . . 4
⊢ ((𝑧 = 𝑤 → [𝑦 / 𝑥]𝜑) ↔ (𝑧 = 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| 13 | 12 | albii 1484 | 
. . 3
⊢
(∀𝑧(𝑧 = 𝑤 → [𝑦 / 𝑥]𝜑) ↔ ∀𝑧(𝑧 = 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| 14 | 10, 13 | bitri 184 | 
. 2
⊢ ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| 15 |   | sb6 1901 | 
. . 3
⊢ ([𝑦 / 𝑥][𝑤 / 𝑧]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑤 / 𝑧]𝜑)) | 
| 16 |   | sb6 1901 | 
. . . . 5
⊢ ([𝑤 / 𝑧]𝜑 ↔ ∀𝑧(𝑧 = 𝑤 → 𝜑)) | 
| 17 | 16 | imbi2i 226 | 
. . . 4
⊢ ((𝑥 = 𝑦 → [𝑤 / 𝑧]𝜑) ↔ (𝑥 = 𝑦 → ∀𝑧(𝑧 = 𝑤 → 𝜑))) | 
| 18 | 17 | albii 1484 | 
. . 3
⊢
(∀𝑥(𝑥 = 𝑦 → [𝑤 / 𝑧]𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → ∀𝑧(𝑧 = 𝑤 → 𝜑))) | 
| 19 | 15, 18 | bitri 184 | 
. 2
⊢ ([𝑦 / 𝑥][𝑤 / 𝑧]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → ∀𝑧(𝑧 = 𝑤 → 𝜑))) | 
| 20 | 9, 14, 19 | 3bitr4i 212 | 
1
⊢ ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) |