ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbctt GIF version

Theorem sbctt 2943
Description: Substitution for a variable not free in a wff does not affect it. (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
sbctt ((𝐴𝑉 ∧ Ⅎ𝑥𝜑) → ([𝐴 / 𝑥]𝜑𝜑))

Proof of Theorem sbctt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2881 . . . . 5 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
21bibi1d 232 . . . 4 (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑𝜑) ↔ ([𝐴 / 𝑥]𝜑𝜑)))
32imbi2d 229 . . 3 (𝑦 = 𝐴 → ((Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑𝜑)) ↔ (Ⅎ𝑥𝜑 → ([𝐴 / 𝑥]𝜑𝜑))))
4 sbft 1802 . . 3 (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑𝜑))
53, 4vtoclg 2717 . 2 (𝐴𝑉 → (Ⅎ𝑥𝜑 → ([𝐴 / 𝑥]𝜑𝜑)))
65imp 123 1 ((𝐴𝑉 ∧ Ⅎ𝑥𝜑) → ([𝐴 / 𝑥]𝜑𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1314  wnf 1419  wcel 1463  [wsb 1718  [wsbc 2878
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-v 2659  df-sbc 2879
This theorem is referenced by:  sbcgf  2944  csbtt  2981
  Copyright terms: Public domain W3C validator