ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbctt GIF version

Theorem sbctt 3052
Description: Substitution for a variable not free in a wff does not affect it. (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
sbctt ((𝐴𝑉 ∧ Ⅎ𝑥𝜑) → ([𝐴 / 𝑥]𝜑𝜑))

Proof of Theorem sbctt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2988 . . . . 5 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
21bibi1d 233 . . . 4 (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑𝜑) ↔ ([𝐴 / 𝑥]𝜑𝜑)))
32imbi2d 230 . . 3 (𝑦 = 𝐴 → ((Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑𝜑)) ↔ (Ⅎ𝑥𝜑 → ([𝐴 / 𝑥]𝜑𝜑))))
4 sbft 1859 . . 3 (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑𝜑))
53, 4vtoclg 2820 . 2 (𝐴𝑉 → (Ⅎ𝑥𝜑 → ([𝐴 / 𝑥]𝜑𝜑)))
65imp 124 1 ((𝐴𝑉 ∧ Ⅎ𝑥𝜑) → ([𝐴 / 𝑥]𝜑𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wnf 1471  [wsb 1773  wcel 2164  [wsbc 2985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sbc 2986
This theorem is referenced by:  sbcgf  3053  csbtt  3092
  Copyright terms: Public domain W3C validator