![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbctt | GIF version |
Description: Substitution for a variable not free in a wff does not affect it. (Contributed by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
sbctt | ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜑) → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 2881 | . . . . 5 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
2 | 1 | bibi1d 232 | . . . 4 ⊢ (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 ↔ 𝜑) ↔ ([𝐴 / 𝑥]𝜑 ↔ 𝜑))) |
3 | 2 | imbi2d 229 | . . 3 ⊢ (𝑦 = 𝐴 → ((Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) ↔ (Ⅎ𝑥𝜑 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)))) |
4 | sbft 1802 | . . 3 ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | |
5 | 3, 4 | vtoclg 2717 | . 2 ⊢ (𝐴 ∈ 𝑉 → (Ⅎ𝑥𝜑 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑))) |
6 | 5 | imp 123 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜑) → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1314 Ⅎwnf 1419 ∈ wcel 1463 [wsb 1718 [wsbc 2878 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-v 2659 df-sbc 2879 |
This theorem is referenced by: sbcgf 2944 csbtt 2981 |
Copyright terms: Public domain | W3C validator |