Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elsb2 | GIF version |
Description: Substitution for the second argument of the non-logical predicate in an atomic formula. See elsb1 2148 for substitution for the first argument. (Contributed by Rodolfo Medina, 3-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
elsb2 | ⊢ ([𝑦 / 𝑥]𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1519 | . . . . 5 ⊢ (𝑧 ∈ 𝑥 → ∀𝑤 𝑧 ∈ 𝑥) | |
2 | elequ2 2146 | . . . . 5 ⊢ (𝑤 = 𝑥 → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑥)) | |
3 | 1, 2 | sbieh 1783 | . . . 4 ⊢ ([𝑥 / 𝑤]𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑥) |
4 | 3 | sbbii 1758 | . . 3 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝑧 ∈ 𝑤 ↔ [𝑦 / 𝑥]𝑧 ∈ 𝑥) |
5 | ax-17 1519 | . . . 4 ⊢ (𝑧 ∈ 𝑤 → ∀𝑥 𝑧 ∈ 𝑤) | |
6 | 5 | sbco2h 1957 | . . 3 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝑧 ∈ 𝑤 ↔ [𝑦 / 𝑤]𝑧 ∈ 𝑤) |
7 | 4, 6 | bitr3i 185 | . 2 ⊢ ([𝑦 / 𝑥]𝑧 ∈ 𝑥 ↔ [𝑦 / 𝑤]𝑧 ∈ 𝑤) |
8 | equsb1 1778 | . . . 4 ⊢ [𝑦 / 𝑤]𝑤 = 𝑦 | |
9 | elequ2 2146 | . . . . 5 ⊢ (𝑤 = 𝑦 → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦)) | |
10 | 9 | sbimi 1757 | . . . 4 ⊢ ([𝑦 / 𝑤]𝑤 = 𝑦 → [𝑦 / 𝑤](𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦)) |
11 | 8, 10 | ax-mp 5 | . . 3 ⊢ [𝑦 / 𝑤](𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦) |
12 | sbbi 1952 | . . 3 ⊢ ([𝑦 / 𝑤](𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦) ↔ ([𝑦 / 𝑤]𝑧 ∈ 𝑤 ↔ [𝑦 / 𝑤]𝑧 ∈ 𝑦)) | |
13 | 11, 12 | mpbi 144 | . 2 ⊢ ([𝑦 / 𝑤]𝑧 ∈ 𝑤 ↔ [𝑦 / 𝑤]𝑧 ∈ 𝑦) |
14 | ax-17 1519 | . . 3 ⊢ (𝑧 ∈ 𝑦 → ∀𝑤 𝑧 ∈ 𝑦) | |
15 | 14 | sbh 1769 | . 2 ⊢ ([𝑦 / 𝑤]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦) |
16 | 7, 13, 15 | 3bitri 205 | 1 ⊢ ([𝑦 / 𝑥]𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 [wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |