| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elsb2 | GIF version | ||
| Description: Substitution for the second argument of the non-logical predicate in an atomic formula. See elsb1 2174 for substitution for the first argument. (Contributed by Rodolfo Medina, 3-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| elsb2 | ⊢ ([𝑦 / 𝑥]𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-17 1540 | . . . . 5 ⊢ (𝑧 ∈ 𝑥 → ∀𝑤 𝑧 ∈ 𝑥) | |
| 2 | elequ2 2172 | . . . . 5 ⊢ (𝑤 = 𝑥 → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑥)) | |
| 3 | 1, 2 | sbieh 1804 | . . . 4 ⊢ ([𝑥 / 𝑤]𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑥) | 
| 4 | 3 | sbbii 1779 | . . 3 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝑧 ∈ 𝑤 ↔ [𝑦 / 𝑥]𝑧 ∈ 𝑥) | 
| 5 | ax-17 1540 | . . . 4 ⊢ (𝑧 ∈ 𝑤 → ∀𝑥 𝑧 ∈ 𝑤) | |
| 6 | 5 | sbco2h 1983 | . . 3 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝑧 ∈ 𝑤 ↔ [𝑦 / 𝑤]𝑧 ∈ 𝑤) | 
| 7 | 4, 6 | bitr3i 186 | . 2 ⊢ ([𝑦 / 𝑥]𝑧 ∈ 𝑥 ↔ [𝑦 / 𝑤]𝑧 ∈ 𝑤) | 
| 8 | equsb1 1799 | . . . 4 ⊢ [𝑦 / 𝑤]𝑤 = 𝑦 | |
| 9 | elequ2 2172 | . . . . 5 ⊢ (𝑤 = 𝑦 → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦)) | |
| 10 | 9 | sbimi 1778 | . . . 4 ⊢ ([𝑦 / 𝑤]𝑤 = 𝑦 → [𝑦 / 𝑤](𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦)) | 
| 11 | 8, 10 | ax-mp 5 | . . 3 ⊢ [𝑦 / 𝑤](𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦) | 
| 12 | sbbi 1978 | . . 3 ⊢ ([𝑦 / 𝑤](𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦) ↔ ([𝑦 / 𝑤]𝑧 ∈ 𝑤 ↔ [𝑦 / 𝑤]𝑧 ∈ 𝑦)) | |
| 13 | 11, 12 | mpbi 145 | . 2 ⊢ ([𝑦 / 𝑤]𝑧 ∈ 𝑤 ↔ [𝑦 / 𝑤]𝑧 ∈ 𝑦) | 
| 14 | ax-17 1540 | . . 3 ⊢ (𝑧 ∈ 𝑦 → ∀𝑤 𝑧 ∈ 𝑦) | |
| 15 | 14 | sbh 1790 | . 2 ⊢ ([𝑦 / 𝑤]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦) | 
| 16 | 7, 13, 15 | 3bitri 206 | 1 ⊢ ([𝑦 / 𝑥]𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 [wsb 1776 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |