Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbim | GIF version |
Description: Implication inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.) |
Ref | Expression |
---|---|
sbim | ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbimv 1886 | . . . 4 ⊢ ([𝑧 / 𝑥](𝜑 → 𝜓) ↔ ([𝑧 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜓)) | |
2 | 1 | sbbii 1758 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 → 𝜓) ↔ [𝑦 / 𝑧]([𝑧 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜓)) |
3 | sbimv 1886 | . . 3 ⊢ ([𝑦 / 𝑧]([𝑧 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜓) ↔ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓)) | |
4 | 2, 3 | bitri 183 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓)) |
5 | ax-17 1519 | . . 3 ⊢ ((𝜑 → 𝜓) → ∀𝑧(𝜑 → 𝜓)) | |
6 | 5 | sbco2vh 1938 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 → 𝜓) ↔ [𝑦 / 𝑥](𝜑 → 𝜓)) |
7 | ax-17 1519 | . . . 4 ⊢ (𝜑 → ∀𝑧𝜑) | |
8 | 7 | sbco2vh 1938 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
9 | ax-17 1519 | . . . 4 ⊢ (𝜓 → ∀𝑧𝜓) | |
10 | 9 | sbco2vh 1938 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓) |
11 | 8, 10 | imbi12i 238 | . 2 ⊢ (([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
12 | 4, 6, 11 | 3bitr3i 209 | 1 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 [wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: sbrim 1949 sblim 1950 sbbi 1952 moimv 2085 nfraldya 2505 sbcimg 2996 zfregfr 4558 tfi 4566 peano2 4579 |
Copyright terms: Public domain | W3C validator |