| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sbim | GIF version | ||
| Description: Implication inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.) | 
| Ref | Expression | 
|---|---|
| sbim | ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbimv 1908 | . . . 4 ⊢ ([𝑧 / 𝑥](𝜑 → 𝜓) ↔ ([𝑧 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜓)) | |
| 2 | 1 | sbbii 1779 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 → 𝜓) ↔ [𝑦 / 𝑧]([𝑧 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜓)) | 
| 3 | sbimv 1908 | . . 3 ⊢ ([𝑦 / 𝑧]([𝑧 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜓) ↔ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓)) | |
| 4 | 2, 3 | bitri 184 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓)) | 
| 5 | ax-17 1540 | . . 3 ⊢ ((𝜑 → 𝜓) → ∀𝑧(𝜑 → 𝜓)) | |
| 6 | 5 | sbco2vh 1964 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 → 𝜓) ↔ [𝑦 / 𝑥](𝜑 → 𝜓)) | 
| 7 | ax-17 1540 | . . . 4 ⊢ (𝜑 → ∀𝑧𝜑) | |
| 8 | 7 | sbco2vh 1964 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | 
| 9 | ax-17 1540 | . . . 4 ⊢ (𝜓 → ∀𝑧𝜓) | |
| 10 | 9 | sbco2vh 1964 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓) | 
| 11 | 8, 10 | imbi12i 239 | . 2 ⊢ (([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | 
| 12 | 4, 6, 11 | 3bitr3i 210 | 1 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 [wsb 1776 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 | 
| This theorem is referenced by: sbrim 1975 sblim 1976 sbbi 1978 moimv 2111 nfraldya 2532 sbcimg 3031 zfregfr 4610 tfi 4618 peano2 4631 | 
| Copyright terms: Public domain | W3C validator |