ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbim GIF version

Theorem sbim 1941
Description: Implication inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
Assertion
Ref Expression
sbim ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))

Proof of Theorem sbim
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbimv 1881 . . . 4 ([𝑧 / 𝑥](𝜑𝜓) ↔ ([𝑧 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜓))
21sbbii 1753 . . 3 ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑𝜓) ↔ [𝑦 / 𝑧]([𝑧 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜓))
3 sbimv 1881 . . 3 ([𝑦 / 𝑧]([𝑧 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜓) ↔ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓))
42, 3bitri 183 . 2 ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓))
5 ax-17 1514 . . 3 ((𝜑𝜓) → ∀𝑧(𝜑𝜓))
65sbco2vh 1933 . 2 ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑𝜓) ↔ [𝑦 / 𝑥](𝜑𝜓))
7 ax-17 1514 . . . 4 (𝜑 → ∀𝑧𝜑)
87sbco2vh 1933 . . 3 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
9 ax-17 1514 . . . 4 (𝜓 → ∀𝑧𝜓)
109sbco2vh 1933 . . 3 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓)
118, 10imbi12i 238 . 2 (([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
124, 6, 113bitr3i 209 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by:  sbrim  1944  sblim  1945  sbbi  1947  moimv  2080  nfraldya  2501  sbcimg  2992  zfregfr  4551  tfi  4559  peano2  4572
  Copyright terms: Public domain W3C validator