ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb8iota GIF version

Theorem sb8iota 5160
Description: Variable substitution in description binder. Compare sb8eu 2027. (Contributed by NM, 18-Mar-2013.)
Hypothesis
Ref Expression
sb8iota.1 𝑦𝜑
Assertion
Ref Expression
sb8iota (℩𝑥𝜑) = (℩𝑦[𝑦 / 𝑥]𝜑)

Proof of Theorem sb8iota
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1516 . . . . . 6 𝑤(𝜑𝑥 = 𝑧)
21sb8 1844 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑧) ↔ ∀𝑤[𝑤 / 𝑥](𝜑𝑥 = 𝑧))
3 sbbi 1947 . . . . . . 7 ([𝑤 / 𝑥](𝜑𝑥 = 𝑧) ↔ ([𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝑥 = 𝑧))
4 sb8iota.1 . . . . . . . . 9 𝑦𝜑
54nfsb 1934 . . . . . . . 8 𝑦[𝑤 / 𝑥]𝜑
6 equsb3 1939 . . . . . . . . 9 ([𝑤 / 𝑥]𝑥 = 𝑧𝑤 = 𝑧)
7 nfv 1516 . . . . . . . . 9 𝑦 𝑤 = 𝑧
86, 7nfxfr 1462 . . . . . . . 8 𝑦[𝑤 / 𝑥]𝑥 = 𝑧
95, 8nfbi 1577 . . . . . . 7 𝑦([𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝑥 = 𝑧)
103, 9nfxfr 1462 . . . . . 6 𝑦[𝑤 / 𝑥](𝜑𝑥 = 𝑧)
11 nfv 1516 . . . . . 6 𝑤[𝑦 / 𝑥](𝜑𝑥 = 𝑧)
12 sbequ 1828 . . . . . 6 (𝑤 = 𝑦 → ([𝑤 / 𝑥](𝜑𝑥 = 𝑧) ↔ [𝑦 / 𝑥](𝜑𝑥 = 𝑧)))
1310, 11, 12cbval 1742 . . . . 5 (∀𝑤[𝑤 / 𝑥](𝜑𝑥 = 𝑧) ↔ ∀𝑦[𝑦 / 𝑥](𝜑𝑥 = 𝑧))
14 equsb3 1939 . . . . . . 7 ([𝑦 / 𝑥]𝑥 = 𝑧𝑦 = 𝑧)
1514sblbis 1948 . . . . . 6 ([𝑦 / 𝑥](𝜑𝑥 = 𝑧) ↔ ([𝑦 / 𝑥]𝜑𝑦 = 𝑧))
1615albii 1458 . . . . 5 (∀𝑦[𝑦 / 𝑥](𝜑𝑥 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑧))
172, 13, 163bitri 205 . . . 4 (∀𝑥(𝜑𝑥 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑧))
1817abbii 2282 . . 3 {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = {𝑧 ∣ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑧)}
1918unieqi 3799 . 2 {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = {𝑧 ∣ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑧)}
20 dfiota2 5154 . 2 (℩𝑥𝜑) = {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)}
21 dfiota2 5154 . 2 (℩𝑦[𝑦 / 𝑥]𝜑) = {𝑧 ∣ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑧)}
2219, 20, 213eqtr4i 2196 1 (℩𝑥𝜑) = (℩𝑦[𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 104  wal 1341   = wceq 1343  wnf 1448  [wsb 1750  {cab 2151   cuni 3789  cio 5151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-sn 3582  df-uni 3790  df-iota 5153
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator