Step | Hyp | Ref
| Expression |
1 | | nfv 1516 |
. . . . . 6
⊢
Ⅎ𝑤(𝜑 ↔ 𝑥 = 𝑧) |
2 | 1 | sb8 1844 |
. . . . 5
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑤[𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧)) |
3 | | sbbi 1947 |
. . . . . . 7
⊢ ([𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ([𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝑥 = 𝑧)) |
4 | | sb8iota.1 |
. . . . . . . . 9
⊢
Ⅎ𝑦𝜑 |
5 | 4 | nfsb 1934 |
. . . . . . . 8
⊢
Ⅎ𝑦[𝑤 / 𝑥]𝜑 |
6 | | equsb3 1939 |
. . . . . . . . 9
⊢ ([𝑤 / 𝑥]𝑥 = 𝑧 ↔ 𝑤 = 𝑧) |
7 | | nfv 1516 |
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑤 = 𝑧 |
8 | 6, 7 | nfxfr 1462 |
. . . . . . . 8
⊢
Ⅎ𝑦[𝑤 / 𝑥]𝑥 = 𝑧 |
9 | 5, 8 | nfbi 1577 |
. . . . . . 7
⊢
Ⅎ𝑦([𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝑥 = 𝑧) |
10 | 3, 9 | nfxfr 1462 |
. . . . . 6
⊢
Ⅎ𝑦[𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) |
11 | | nfv 1516 |
. . . . . 6
⊢
Ⅎ𝑤[𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) |
12 | | sbequ 1828 |
. . . . . 6
⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ [𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧))) |
13 | 10, 11, 12 | cbval 1742 |
. . . . 5
⊢
(∀𝑤[𝑤 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑦[𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧)) |
14 | | equsb3 1939 |
. . . . . . 7
⊢ ([𝑦 / 𝑥]𝑥 = 𝑧 ↔ 𝑦 = 𝑧) |
15 | 14 | sblbis 1948 |
. . . . . 6
⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) |
16 | 15 | albii 1458 |
. . . . 5
⊢
(∀𝑦[𝑦 / 𝑥](𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) |
17 | 2, 13, 16 | 3bitri 205 |
. . . 4
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)) |
18 | 17 | abbii 2282 |
. . 3
⊢ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} = {𝑧 ∣ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)} |
19 | 18 | unieqi 3799 |
. 2
⊢ ∪ {𝑧
∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} = ∪ {𝑧 ∣ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)} |
20 | | dfiota2 5154 |
. 2
⊢
(℩𝑥𝜑) = ∪
{𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} |
21 | | dfiota2 5154 |
. 2
⊢
(℩𝑦[𝑦 / 𝑥]𝜑) = ∪ {𝑧 ∣ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑧)} |
22 | 19, 20, 21 | 3eqtr4i 2196 |
1
⊢
(℩𝑥𝜑) = (℩𝑦[𝑦 / 𝑥]𝜑) |