ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbbi GIF version

Theorem sbbi 1952
Description: Equivalence inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sbbi ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓))

Proof of Theorem sbbi
StepHypRef Expression
1 dfbi2 386 . . 3 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))
21sbbii 1758 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ [𝑦 / 𝑥]((𝜑𝜓) ∧ (𝜓𝜑)))
3 sbim 1946 . . . 4 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
4 sbim 1946 . . . 4 ([𝑦 / 𝑥](𝜓𝜑) ↔ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑))
53, 4anbi12i 457 . . 3 (([𝑦 / 𝑥](𝜑𝜓) ∧ [𝑦 / 𝑥](𝜓𝜑)) ↔ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ∧ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑)))
6 sban 1948 . . 3 ([𝑦 / 𝑥]((𝜑𝜓) ∧ (𝜓𝜑)) ↔ ([𝑦 / 𝑥](𝜑𝜓) ∧ [𝑦 / 𝑥](𝜓𝜑)))
7 dfbi2 386 . . 3 (([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) ↔ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ∧ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑)))
85, 6, 73bitr4i 211 . 2 ([𝑦 / 𝑥]((𝜑𝜓) ∧ (𝜓𝜑)) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓))
92, 8bitri 183 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756
This theorem is referenced by:  sblbis  1953  sbrbis  1954  sbco  1961  sbcocom  1963  sb8eu  2032  sb8euh  2042  elsb1  2148  elsb2  2149  pm13.183  2868  sbcbig  3001  sb8iota  5167
  Copyright terms: Public domain W3C validator