| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbbi | GIF version | ||
| Description: Equivalence inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbbi | ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi2 388 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | |
| 2 | 1 | sbbii 1787 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜓) ↔ [𝑦 / 𝑥]((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
| 3 | sbim 1980 | . . . 4 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
| 4 | sbim 1980 | . . . 4 ⊢ ([𝑦 / 𝑥](𝜓 → 𝜑) ↔ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑)) | |
| 5 | 3, 4 | anbi12i 460 | . . 3 ⊢ (([𝑦 / 𝑥](𝜑 → 𝜓) ∧ [𝑦 / 𝑥](𝜓 → 𝜑)) ↔ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ∧ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑))) |
| 6 | sban 1982 | . . 3 ⊢ ([𝑦 / 𝑥]((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ ([𝑦 / 𝑥](𝜑 → 𝜓) ∧ [𝑦 / 𝑥](𝜓 → 𝜑))) | |
| 7 | dfbi2 388 | . . 3 ⊢ (([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) ↔ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ∧ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑))) | |
| 8 | 5, 6, 7 | 3bitr4i 212 | . 2 ⊢ ([𝑦 / 𝑥]((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)) |
| 9 | 2, 8 | bitri 184 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 [wsb 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 |
| This theorem is referenced by: sblbis 1987 sbrbis 1988 sbco 1995 sbcocom 1997 sb8eu 2066 sb8euh 2076 elsb1 2182 elsb2 2183 pm13.183 2910 sbcbig 3044 sb8iota 5238 |
| Copyright terms: Public domain | W3C validator |