ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbbi GIF version

Theorem sbbi 1988
Description: Equivalence inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sbbi ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓))

Proof of Theorem sbbi
StepHypRef Expression
1 dfbi2 388 . . 3 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))
21sbbii 1789 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ [𝑦 / 𝑥]((𝜑𝜓) ∧ (𝜓𝜑)))
3 sbim 1982 . . . 4 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
4 sbim 1982 . . . 4 ([𝑦 / 𝑥](𝜓𝜑) ↔ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑))
53, 4anbi12i 460 . . 3 (([𝑦 / 𝑥](𝜑𝜓) ∧ [𝑦 / 𝑥](𝜓𝜑)) ↔ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ∧ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑)))
6 sban 1984 . . 3 ([𝑦 / 𝑥]((𝜑𝜓) ∧ (𝜓𝜑)) ↔ ([𝑦 / 𝑥](𝜑𝜓) ∧ [𝑦 / 𝑥](𝜓𝜑)))
7 dfbi2 388 . . 3 (([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) ↔ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ∧ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑)))
85, 6, 73bitr4i 212 . 2 ([𝑦 / 𝑥]((𝜑𝜓) ∧ (𝜓𝜑)) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓))
92, 8bitri 184 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787
This theorem is referenced by:  sblbis  1989  sbrbis  1990  sbco  1997  sbcocom  1999  sb8eu  2068  sb8euh  2078  elsb1  2184  elsb2  2185  pm13.183  2915  sbcbig  3049  sb8iota  5248
  Copyright terms: Public domain W3C validator