![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbbi | GIF version |
Description: Equivalence inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbbi | ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi2 388 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | |
2 | 1 | sbbii 1765 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜓) ↔ [𝑦 / 𝑥]((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
3 | sbim 1953 | . . . 4 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
4 | sbim 1953 | . . . 4 ⊢ ([𝑦 / 𝑥](𝜓 → 𝜑) ↔ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑)) | |
5 | 3, 4 | anbi12i 460 | . . 3 ⊢ (([𝑦 / 𝑥](𝜑 → 𝜓) ∧ [𝑦 / 𝑥](𝜓 → 𝜑)) ↔ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ∧ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑))) |
6 | sban 1955 | . . 3 ⊢ ([𝑦 / 𝑥]((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ ([𝑦 / 𝑥](𝜑 → 𝜓) ∧ [𝑦 / 𝑥](𝜓 → 𝜑))) | |
7 | dfbi2 388 | . . 3 ⊢ (([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) ↔ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ∧ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑))) | |
8 | 5, 6, 7 | 3bitr4i 212 | . 2 ⊢ ([𝑦 / 𝑥]((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)) |
9 | 2, 8 | bitri 184 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 [wsb 1762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 |
This theorem is referenced by: sblbis 1960 sbrbis 1961 sbco 1968 sbcocom 1970 sb8eu 2039 sb8euh 2049 elsb1 2155 elsb2 2156 pm13.183 2877 sbcbig 3011 sb8iota 5187 |
Copyright terms: Public domain | W3C validator |