ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb5 GIF version

Theorem sb5 1880
Description: Equivalence for substitution. Similar to Theorem 6.1 of [Quine] p. 40. (Contributed by NM, 18-Aug-1993.) (Revised by NM, 14-Apr-2008.)
Assertion
Ref Expression
sb5 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sb5
StepHypRef Expression
1 sb6 1879 . 2 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
2 sb56 1878 . 2 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
31, 2bitr4i 186 1 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1346  wex 1485  [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-sb 1756
This theorem is referenced by:  sbnv  1881  sborv  1883  sbi2v  1885  nfsbxy  1935  nfsbxyt  1936  2sb5  1976  dfsb7  1984  sb7f  1985  sbexyz  1996  sbc5  2978
  Copyright terms: Public domain W3C validator